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Abstract

In this paper we focus on the formal qualitative representation of an agent’s evidence
and justification in support of her beliefs and knowledge. Our formal setting is based
on ‘justification models’, which we introduce as a generalization of the so-called ‘ev-
idence models’ proposed by J. van Benthem and E. Pacuit in [18]. We use these
structures to express how an agent’s evidence supports her doxastic state, expressing
as such an agent’s justifiable beliefs. We study a number of specific classes of justifica-
tion models as well as their relations. Overall, these structures are more general than
the so-called plausibility models used to represent an agent’s doxastic and epistemic
states in [14,7,8]. We illustrate the models in this paper via examples and focus on
the dynamics of justification models.

Keywords: Justification models, justifiable beliefs, doxastic logic, evidence logic

1 Introduction

We have gained inspiration from Keith Lehrer’s informal analysis of defeasible
knowledge in terms of “undefeated justified acceptance” [11]. Any formal rep-
resentation of this epistemic concept will requires an intricate analysis that can
link an agent’s defeasible knowledge of a proposition to the sound justification
that she has in support of it. We pursue this line of thought in this paper
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and focus on the introduction of a formal system that can express the neces-
sary relations between an agent’s epistemic or doxastic state and the evidence
or justification that supports it. The models we introduce in this paper are
called “justification models” and we study these structures in the framework
of Dynamic Epistemic Logic and its recent extensions that can deal with belief
revision theory [14,7,8].

In the tradition of logics designed to handle evidence and beliefs, we follow
in this paper the semantic account that was initiated in [18] in the context of
neighborhood models while the work in [2,5,3,4] explores evidence and beliefs
in the context of topological models. van Benthem and Pacuit’s semantic ap-
proach to evidence in terms of neighborhood models allows them to deal with
possibly false and possibly mutually inconsistent evidence. If we focus on the
relation between evidence and the agent’s beliefs as well as her belief dynamics,
we observe that the belief revision policies modelled in the context of ‘evidence
models’ [18] do not necessarily satisfy the AGM postulates of belief revision
[1]. This is due to the fact that the preorder relation that can be induced on
the possible worlds in these models is not total. van Benthem and Pacuit go on
to show that (uniform) evidence models can be turned into partial plausibility
models and they indicate how a partial plausibility model can be extended to
an evidence model. In their later work, van Benthem, Pacuit and Fernandez-
Dugque [16,17] study different types of evidence models as well as their relations
to plausibility models. Continuing this line of work, we study in this paper dif-
ferent types of justification models to represent evidence and beliefs and we
explore the relations between these classes of models.

In this paper we first introduce our main formal system in section 2 and we
explain how to enhance our structures with a plausibility relation over possible
worlds in section 3. In section 4 we study a number of different classes of
justification models. An important type of justification models is given by the
class of (introspective) evidence models of [18]. In our overview we include
plausibility models and show how they are related to justification models. We
further indicate how a justification model can be mapped into a plausibility
model which allows us to define a number of epistemic and doxastic attitudes
of an agent. Next we introduce counting models and weighting models, proving
that they can be considered as a special kind of justification models and we show
that (introspective) evidence models match to a special kind of justification
models.

After introducing different types of justification models in section 4, we
study their dynamics in section 5. In particular we focus on the notion of
update of a justification model. We study this update operation in each of the
introduced classes of justification models.

Finally, we provide a language for a logical system containing a number of
sound axioms that can establish a new logic of justifiable beliefs in section 6.
Given this logical language, we can express a number of interesting philosoph-
ical concepts and properties about justifiable beliefs and defeasible knowledge.
We conclude this paper with some final remarks in the last section.
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2 Introduction to Justification Models

We start with the following example of a specific scenario:

Example 1. Our agent Alice, a biology student, investigates an animal which
is unkown to her. Alice will form a belief about the animal in front of her on the
basis of the evidence that she gathers from four different sources of information
(from her colleagues). Her first information source tells Alice that ‘the animal
can swim’. The second source states that ‘it is a non-flying bird’. The third
source says ‘it lays eggs’ and the fourth source says ‘it flies’.

In this example, the collection of evidence coming from the four sources is
accessbile to Alice. Yet this doesn’t mean that all the evidence that is accessible
to Alice forms a consistent set. Indeed, in this example we assume that an
animal either does or doesn’t fly but can’t do both, as such the second and
fourth sources are contradicting each other. Alice’s evidence is not conclusive,
yet Alice can reason about her evidence and she knows the evidence that is
accessible to her.

To provide a formal model of this example, we start with a possible worlds
model in which a piece of evidence is represented as a set of possible worlds.
Formally, we introduce a new type of model, called justification model, to cap-
ture the agent’s evidence or justification as well as the agent’s doxastic and
epistemic state.

Definition 1 A justification model M is a tuple (S, E, =<,||||) consisting of a
finite set S of states or so-called possible worlds, a family E C P(S) of non-
empty subsets e C S (0 ¢ E), called evidence (sets) such that S is itself an
evidence set (S € E). We call a body of evidence (or argument) any F C E
such that (\F # () and we denote by & C P(FE) the family of all bodies of
evidence. Any justification model comes equipped with a standard valuation
map ||-|| and a partial preorder < on £ satisfying the following constraints:

FCF =sF=F

FLF GG and FFNG' =0=FUG=<F UG
FF.GG and FFNG =0=FUG=<F UG

where F, F' .G,G', FUG, F'"UG’ are bodies of evidence, i.e. consistent families
of evidence sets.

Note that the empty family of evidence sets () is still a body of evidence,
since 0 = {s € S| Ve € E(e € D = s € e)}, §is a consistent family of
evidence sets.

The above introduced relation =< is a partial preorder, connecting only the
consistent families of evidence sets. Here we read F' < G as the body of evidence
G is (considered) to be at least as convincing or easier to accept (by some
implicit agent) as the body of evidence F. Similarly, the strict version F < G
denotes that the body of evidence G is (considered to be) more convincing,
easier to accept (by some implicit agent) than the body of evidence F. The
conditions in definition 1 indicate that the introduced preorder < does not
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contradict the set-theoretic inclusion order on bodies of evidence. We can
impose further conditions on =< to obtain a total preorder by requiring that
either F' < I’ or I’ < F. Such a justification model with a total preorder
relation is called a total justification model. Note that in total justification
models, all evidence sets are comparable.

In this paper we assume that the agent is introspective regarding her evi-
dence. Informally this means that the agent knows what evidence is available
to her. Without this assumption, it will be natural to replace the current fam-
ily of evidence sets E by a relation E C S x ©(S), which will coincides with
the definition of the evidence relation by van Benthem and Pacuit in [18].

Example 1 continued. Figure 1 illustrates the justification model for the
above example. In this figure we introduce the state space S and name
the possible worlds s,t,u,v,w and x, each of which satisfies a given atomic
proposition coming from the set {Whale, Pigeon, Goldfish, Pengiun, Emu,
Bat}. The family E consists of four evidence sets e; = {s,t,u}, ea = {u, v},
es = {u,v,t,w} and e4 = {w,z} and S. The agent Alice is implicitly
present and we assume that she has the different arguments (or bodies of ev-
idence) eq,eq,€3,e4 at her disposal. The collection of Alice’s arguments (or
bodies of evidence) £ includes besides ) a number of important arguments
{e1},{e2},{es}, {ea},{e1,e2},{e1,e3},{es,ea},{€1,e2,e3}. In particular, her
body of evidence coming from sources 3 and 4 supports the hypothesis that
the animal is a typical flying bird (e.g. pigeon), while Alice’s body of evi-
dence from sources 1, 2 and 3 supports the hypothesis that the animal is a
penguin (non-fying bird, lays eggs and swims). Alice’s arguments are ordered,
e.g. {e1} <X {e1,ea}, hence the argument that the animal is a whale is less
convincing to her in the light of the evidence coming from sources 1 and 2.

e2: NON-FLYING BIRD ed: FLY
el: SWIM | e3: EGGS p

Fig. 1. Justification model for Example 1

3 Plausibility in Justification Models

In the literature on dynamic epistemic logic, a range of epistemic and doxastic
attitudes of agents can be represented in the framework of so-called plausibilty
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models [7,8,14,19].Plausibility models are Kripke models in which the accessi-
bility relation (or so-called plausibility relation) is given by a preorder <C Sx .S
over the set of possible worlds. We will read the plausibility relation s < ¢ to
capture that world s is at least as plausible as t. As argued for in [8,15,19],
these type of models have a number of advantages over the well-known K D45
models in modal logic for the representation of doxastic states, especially in
the context of belief dynamics and belief revision. Hence it is a natural step
to investigate the options to introduce a plausibility relation over states within
justification models. As we show next, this can be done in a canonical way.

We first introduce the notion of a largest body of evidence consistent with a
given state s € S and denote it as

Es:={ecE|sce}

A plausibility relation on states can then be induced directly from the partial
preorder on & as follows: For two states s,t € S, we put

s<gptiff By <E;

Example 1 continued. To illustrate this, we return to Figure 1 and observe
that the largest body of evidence consistent with z is E, := {es} and the
largest body of evidence consistent with w is E,, := {e3,es}. Since E, < Ey,
we obtain w <g x in this example.

Epistemic and doxastic notions Given a justification model equipped with
a plausibility relation, we can define all epistemic and doxastic notions usually
defined on plausibility models [8,19]. This includes the notions of irrevocable
knowledge (K), belief (B), conditional belief (B~), strong belief (Sb) and de-
feasible knowledge (K p), which we define below by using the plausibility order
<pg (and it’s strict version <g). In the following we use the notation best< , P to
denote the most plausible P-worlds in the plausiblity ordering, i.e. best<, P =
Min<, P = {s € P| thereisno t < s for any t € P}. We abbreviate best< S
as best to denote the set of most plausible states in the given state space S.

KP:={seS:P=5}
BP := {s€ S:best<, C P}
BOP := {s€ S :best<,Q C P}
SbP :={seS:P#(0andt<pwforaltePandal w¢ P}
KpP = {s€ S:t#g simpliest € P}

Note that in case the plausibility order <g is a total relation, the following
proposition holds:

s = KpP iff s = BYP for all Q such that s = Q

In the last section we return to these epistemic and doxastic attitudes and
investigate their link to an agent’s arguments or bodies of evidence.
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4 Special classes of justification models

Justification models provide a very general framework, subsuming a range of
different existing settings. In this section we study the relations between dif-
ferent classes of justification models. In particular we show that partial and
total plausibility models and the evidence models of [18] are a special class of
justification models. We further introduce two other special classes of justi-
fication models, called counting models and weighting models. The following
overview of the relations between justification models, counting models, weight-
ing models, plausibility models and evidence models, illustrated in the following
Figure 2, will be explained below:

Justification Models

Evidence Models

Grove Spheres

Counting Models

Weighting Models

Total Justification
Models

Fig. 2. Overview of Justification Models

4.1 Plausibility models

Any plausibility model (S, <, ||-||), equipped with a preorder <C S x S, can be
viewed as a special kind of justification model (S, E, <, ||-||) in which S is the
set of possible worlds and the set of evidence sets is given by £ = {] w: w € S}
where | w = {s € S : s <w}. The preorder on bodies of evidence can be given
by either one of the following options®:

(i) (Inclusion order) F <y F' iff F C F' or
(ii) (Cardinality order) F <o F' iff | F'|<| F'|.
In the second case, plausibility models are a special case of the counting
models which we introduce below. In the first case, plausibility models (.S, <
,|I-l) are a special kind of justification models (S, E, <1, ||-||) in which the pre-

order on bodies of evidence is given by inclusion (X;=C), the evidence sets are
nested that is, Ve,e’ € F either e C €’ or ¢’ C e (i.e. the pre-order is a total

4 Note that while the inclusion order is not necessarily total, the cardinality order is total.
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pre-order). A body of evidence F' corresponds to any family of spheres of a
plausibility model® and £ corresponds to all the families of spheres.

In line with the mentioned two cases, we can define two plausibility maps
Just; and Justy, mapping plausibility models to justification models:

° (57§7I|H) E“_“; (Sanjlv HH)
© (S, Il P (S, B 2oy )LD

The plausibility map Just; corresponds to the case where the preorder on
bodies of evidence is given by the inclusion order while the plausibility map
Justy corresponds to the case where the preorder on bodies of evidence is given
by the cardinality order. We call the justification models that can be obtained
in one of these two ways (by applying Just, or Justs to a plausibility model),
sphere-based justification models.

Reversly, any justification model (S, E, <, ||.||) can be mapped into a type of
plausibility model (S, <,||.||). In order to do so, we define the plausibility map
Plau, mapping justification models to plausibility models: (S, E,=,].||) o
(8, <, I1)-

A justification model with a partial pre-order gives a partial plausibility
model while a justification model with a total pre-order gives a total plausibility
model. Following this, we observe that total justification models induce total
plausibility models, i.e.

VE,F'(FXF'VF X F)<=Vs,s(s<ps Vs <gs)

Note that the map Plau mapping justification models to plausibility models
is not an injective map. So, two different justification models can give rise
to the same plausibility model. If we interpret a plausibility model M as a
justification model M’ and then apply the map Plau, we obtain the initial
plausibility model M. The converse is false since if we apply the map Plau on
a justification model M’ to obtain a plausibility model M and then interpret
this plausibility model M as a justification model, we do not obtain the initial
justification model M’. Thus, we have both:

e Plau(Just;(M)) = M for any plausibility model M and
Justy (Plau(M’")) # M’ for any justification model M/,

e Plau(Justas(M)) = M for any plausibility model M and
Justa(Plau(M')) # M’ for any justification model M’.

5 We switch back and forth between the representation in terms of plausibility models and
the equivalent setting in terms of Grove models, [10]. Semantically, the belief state of an
agent can be modelled using families of sets of sets called spheres. This type of sphere model
is built up from sets of possible worlds and so defines propositions as sets of possible worlds.
The propositions believed by an agent (constituting her belief set) form the central sphere
which is surrounded by concentric spheres, each of them representing a degree of similarity
to the central sphere.
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4.2 Counting models

We introduce the structure of counting model as follows. A counting model
is a justification model (S, E, =<, ||-||) in which the pre-order is given by the
cardinality order, i.e. F < F'iff | F|<| F'|.6

In counting models, a body of evidence G is considered to be more con-
vincing than a body of evidence F' if and only if the number of evidence sets
e € G is bigger than the number of evidence sets e € F: F X Giff | F |<| G |.
The intuition is that the more evidence the agent knows or has access too, the
stronger is the evidence. This notion of evidence strength can be applicable to a
number of scenarios, though one easily can provide examples where expressing
strength of evidence in terms of counting will not be applicable.

Example 2. We represent an example of a counting model in Figure 3. In
this example, we introduce four possible worlds namely s, ¢, v and w. We
consider five evidence sets eq, e, e3, e4 and es. Since the order on evidence
is induced from the cardinality order, we have F < G iff | F |<| G |. As such
we assign the following numbers to arguments: | {e1} |= 1, | {e3,eq} |= 2,
| {e2,ea} |= 2 and | {eq,e3,e5} |= 3. This yields the following preorder over
arguments, indicating their strenght {ea,e4} < {e2,€3,e5}, {e3,e4} < {ea, €4},

{(31} =< {63, 64}.

Fig. 3. Counting model

4.3 Weighting models

A special class of justification models is what we call ‘Weighting models’ these
are structures (S, E, f,|-||) where we assign a weight (in terms of a natural
number) to each piece of evidence f : F — N.

6 Note that cardinality generates a total pre-order.
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Let (S, E, f,]||]) be a weighting model. The function f can be extended to

bodies of evidence £ such that f(E) = > f(e). Given the weights of bodies
eckE
of evidence, it is natural to introduce the preorder on bodies of evidence as

follows:
E <y E'iff f(E) < f(E)

As such any weighting model endowed with <y is a justification model.

Example 3. We represent an example of a weighting model in Figure 4.
In this example, there are four possible worlds namely s, ¢, v and w and five
evidence sets eq, es, e3, e4 and e5. The model comes equipped with the function
f + E — N defined such that f(e1) = 1, f(e2) = 2, f(e3) = 1, f(e4) = 3 and
f(es) = 3. We calculate that f(e1) = 1, f({es,ea}) =4, f({e2,e4}) =5 and
f({e2,e3,e5}) = 6 and this then yields the following preorder over arguments
{62,64} =<r {62,63765}7 {63,64} =<r {62764}, {61} =<f {63,64}.

Fig. 4. Weighting model with f(e1) = 1,f(e2) = 2,f(e3) = 1,f(es) = 3,f(e5) = 3

One observes that counting models are a special case of weighting models
in which f(e) =1for alle € E.

Proposition 1. Every weighting model (S, E, f,||-||) is a justification model
(8., = |-

In order to prove this, we need to show that weighting models (and so
counting models) satisfy the three constraints which the preorder must satisfy
for it to be a justification model.

Proof. First note that since we use the order on natural numbers, transitivity
follows.

e if FC F' then f(F)= > f(e) < > f(e)= f(F’) that is, F < F".
e€F e€F
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e Let FXF GG and F'F NG =10.
FuG= X f(e):Zf()+Zf(€) > fle).

e€c FUG ecF ee FNG

Moreover F' UG' = Y. f(e) = Zf()"i‘Zf() >, f(e).

ec F'UG’ ecG’ ec FNG

Since F'NG' =0 then F" UG = Z fley= > fle)+ > f(e).
SinceFjF’,GjG’thenf(F)J:GfE/GU)G; > f()<f(Fc;)€(if( G).
Hence FUG <X F'UG. e

e Let F<F',G =G and F'NG" = {.
FUG= > fle)= Zf(6)+2f() > fle).

€ FUG € FNG
Moreover F/ UG’ = Z fle)= Zf()"‘Zf(e)_ >, fle).
e€FTUG! =rel e€FNG
Since F' NG’ = () then FF UG’ = Z fle)= > fley+ > f(e).
ecFTUG! ecF e€G’
Then f(F)+ f(G) = > fle) < f(F') + f(G").
ecFNG

Hence FUG < F'UG".

4.4 Evidence models

In [18], Johan van Benthem and Eric Pacuit introduce their so-called ‘evidence
models’. These models are based on the well-known neighbourhood semantics
for modal logic in which the neighbourhoods are interpreted as evidence sets:
pieces of evidence (possibly false, possibly mutually inconsistent) possessed by
the agent. It is important to note that the plausibility relation that can be
induced on possible worlds in evidence models is not a total preorder. Hence
in these models, not all possible worlds are comparable.

Definition 2 An evidence model M is a tuple (S, E,||.||) consisting of a non-
empty set of worlds S. E is an evidence relation E C S X P(S) and ||.|| is a
standard valuation function.

The collection of evidence sets is defined as F(s) = {X|sEX, X C S}
we impose two constraints on the evidence function:
(Cons) For each state s, 0 & F(s)
(Triv) For each state s, S € E(s)
These constraints ensure that no evidence set is empty and that the universe
S is itself an evidence set. In this framework, the combination of different
evidence sets does not necessarily yield consistent evidence. Indeed for any two
evidence sets X and Y , X and Y may be disjoints sets that is, X NY = 0.
To investigate the relation between evidence models and justification mod-
els, we first introduce the notion of an introspective evidence model:

Definition 3 An evidence model M is introspective iff we have sEX iff tEX
for all s,t € S and for all X C S.

Introspective evidence models are a special kind of justification models
namely, they correspond exactly to those justification models in which the
pre-order on bodies of evidence is given by the inclusion order.
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In an introspective evidence model, the evidence relation E boils down
to the concept of evidence used in justification models, that is, it becomes a
family of evidence sets E C P(S) such that E; = {e | s € E} for any s € S.
Moreover, the notions of irrevocable knowledge (K), belief (B) and conditional
belief (B~) defined in evidence models in [18] do exactly correspond to the
notions we defined earlier in this paper.

4.5 Important notions in justification models

For a given argument F' € &£, an evidence set e € E and state s € S in a
justification model, we can define a number of philosophical concepts indicating
when an argument is sound, when an argument (conditionally) supports a
proposition and when we have a (conditional) justification for a proposition:

Definition 4 An argument F is sound at s iff s € (| F.

Note that the empty argument ) is always sound at every state s since
seNh=S.
Definition 5 An argument F supports Q (or F is an argument for Q) iff
NF CQ.

Definition 6 A justification for Q is an argument F such that all arguments
at least as strong as F support Q, i.e. VF'(F < F' = N F' C Q).

Definition 7 An argument F supports Q conditional on P (or F is an argu-
ment for Q conditional on P) iff NF NP C Q.

Definition 8 A justification for Q given P is an argument F' that is consistent
with P such that all arguments at least as strong as F support QQ conditional

onP,ie. NFNP#D and VF'(F < F'=NF' NP CQ).

5 Dynamics of Justification Models

In line with the work on dynamic epistemic logic, we will model the dynamics
of justification models as a model transforming operation. Such a model trans-
formation is taken to be triggered by an epistemic or doxastic event. In line
with the above examples, we consider the case in which an agent is confronted
with new incoming information and accommodates this new information into
her epistemic or doxastic state.

While different types of events can be studied, ranging from public an-
nouncements [12] to private announcements including truthfull ones and un-
truthfull ones [6,15], in this paper we restrict ourselves to updates of justification
models in which the agent receives new truthful information:

Definition 9 Given a justification model M = (S, E, =, ||-||) and a subset P C
S, we define the relativization of the justification model M to P as M|P =
(S/v E/a jlv HHI) with:

§'=p

E'={enS | ecE, enS #0}
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F G iff{feecElenS eF}=x{eckE|ens G}
Il =lI-In s’

In the updated model, the new set of states S’ is reduced to the set of states
satisfying P. The new evidence set E’ is taken to be the old evidence E that is
consistent with the states surviving the update and the order <’ on new bodies
of evidence F' =<' G’ reflects the fact that the new evidence within G’ is at
least as strong as the new evidence in F”.

We define the restriction F|M’ of the argument F' to the justification model
M’ as follows: If F' is an argument in a justification model M, and if M’ =
M|P is the relativization of the justification model M to a subset P, then
F|M' is a body of evidence for the model M’ (called the restriction F|M’ of
the argument F' to model M’), defined by

FIM ={enS |eeF}

5.1 Plausibility models and Evidence Models

The dynamics of evidence models is studied in [18] and the relativization of
these models coincides with the update defined by van Benthem and Pacuit.
When restricting to sphere-based justification models, our update operation
coincides with the usual update on plausibility models where the plausibility
order < in the resulting model is given as:

<p=<gp NS x 9

For s € S’, we have Es={e€ E|sce}and E, ={en S’ |e € E;}. Note
that from e € F, and s € S/, we have s € eN S’ # (.
For s,t € S’, we have:

s<ht < E/ <X'E, < {enS|ecE} = {enS |ec E}
<« {enS|ecEtece}=x'{enS |ec E sce}
<~ {elecE tce}<{elecE sce}
<~ EtjEs
<~ s<gt

5.2 Counting models

It is interesting to study the dynamics of specific classes of justification models.

In particular we observe that the class of counting models is not closed under

the update operation. When a given counting model is updated, the result of

updating yields a justification model but not necessarily a counting model.
The following example illustrates the problem:

Example 4. Consider the counting model depicted in Figure 5 where there
are three pieces of evidence e;, ey and e3 and 4 states s,t,u and v. The
most plausible states are the states s and u since E, := {e1,e2}, Et := {e1},
E, :={ej,e3}, E, :={es} and so | E; |<| Es |, | Ev |<| Es |, | E¢ |<| E, | and
| Ey [<| By |.
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Fig. 5. Initial counting model

It is easily to see that a problem arises when dealing with certain updates
of this model. Suppose that the implicit agent receives the hard information
that P such that P is only true in s and v. Next, the model is updated with
P and the states u and ¢ are deleted as illustrated in Figure 6. Observe that s
and v are equiplausible after the update action, since F, := {es}, Es := {e4}
and so | Es |=| Ey, |.

Fig. 6. Updated Counting Model

Due to the update we now lost the information that originally | E, |<| E; |,
indeed one would have expected to obtain the justification model as depicted
in Figure 7 yet no propositions are present to distinghuish e; and es to make
it possible that they can both be counted.

The problem is clearly visible if we work with plausibility models. We first
provide the corresponding initial (total) plausibility model in Figure 8, and then
represent the updated plausibility model after the update with P in Figure 9.
After the update, the state s is still more plausible than the state v.

5.3 Weighting models

A solution to the problem in the previous subsection can be provided by working
with weighting models instead of counting models.

We define the map Wei, mapping weighting models to justification models
as follows: (S, E, f,[I-]|) == (S, <, |I.I-
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Fig. 7. Labelling solution

-P P -P P
[ ] [ ] [ ] [ ]
t v u S

Fig. 8. Initial plausibility model

P P
(] (]
v s

Fig. 9. Plausibility model updated

In contrast to counting models, we can see that the class of weighting models
is better behaved:

Proposition 2. The class of weighting models is closed under the operation
of updates

Wei(M)|e = Wei(M|p)

Proof. Let (S, E, f,|||) be a weighting model M where f : E — N. We
define the result of updating this model with . The weighting model M =
(S, E, f,|I]) is changed to the weighting model M|p = (S, E’, f',|-|') with:

S"=llells

E'={enS | ecE, enS #0}
)= Z{f(e) | e € E such that en S’ # 0}
"=l ns’

Coming back to Figure 5, let us put f(e1) = f(e2) = f(e3) = 1. After the
update with P, we obtain v < s since as depicted in Figure 7, f(e1) + f(e2) >

f(es).
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6 Justifiable Beliefs

Now that we have introduced a number of epistemic and doxastic notions and
concepts such as evidence and arguments, we will study the link between them.
In particular this ties in with philosophical debates about justifiable beliefs
supported by arguments.

As our language to talk about justification models we work with an exten-
sion of the setting introduced in [18].7 This extension is necessary to capture
the main interesting features of justification models.

Syntax. Formally, we build up the language L 5 as follows:

Definition 10 Let ® be a set of propositional atoms, we define the language
in BNF format

pu=plap A | K| Kpp|sound | V¢ | [X]p

The language comes equipped with the standard Boolean operators of nega-
tion and conjuction and a number of modalities which come with the following
intended interpretation: K¢ expresses that the agent knows that ¢ is the case.
Kpy expresses that the agent defeasibly knows that ¢ is the case. The expres-
sion sound captures that the current argument F' is sound (i.e. true) at the
actual state s, i.e. the current pieces of evidence e € F' are true. We use V"¢ to
capture the expression that for every argument F, ¢ is the case. The dynamic
construct [<]¢ captures that for every argument F’ at least as convincing as
the current argument F', ¢ is the case.

Given the language L5 , we introduce the following abbreviations: By :=
K-Kp—-Kpgp is read as ‘the implicit agent believes that ¢’. In total justifica-
tion models, this reduces to By := ~Kp—Kpyp

In addition, we introduce the following abbreviations:

Supp ¢ := K(sound — ¢)
Here Supp ¢ captures the fact that the current argument F' supports ¢.
Just o 1= [<]supp ¢

The construct Just ¢ expresses that the current argument is a justification for
®.
Be = 3supp e

Here Hy captures the fact that there exists an argument in support of ¢.

Semantics. The formulas of £ ;5 are interpreted at a state s and a body of
evidence F' such that F' is the current argument. Given a justification model

7 Note that the axiom system of van Benthem and Pacuit [18] holds for general justification
models. In particular the reduction axioms in their dynamic account are sound in the class
of all justification models.
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M, a semantics for £ ;p is build up as follows:

s, FEp iff s € V(p)

s, FE—-p it s,F}¢p

S F @Ay iff (s, F @) A (s, F =)

JFEKp ifft,FlE=pforeverytelS

FEKpy iff t, F = ¢ for every t € S such that t < s
F | sound iff se N F

JEEVYp iff s, F' = ¢ for every F' € £

FE[Rle ffVF(F<F =sF Eyp)

The interpretation for the classical operators is standard. Following the above
intented interpretation, note that irrevocable knowledge K¢ is expressed as
truth of ¢ in all possible worlds while the concept of defeasible concept of
knowledge Kpy is interpreted as truth of ¢ in all worlds that are at least as
plausible as the point of evaluation. The interpretation of sound, refers to the
current argument F' at which the evaluation takes place. Guaranteeing that
the current argument F is true at a state s, is captured by the fact that s has
to be contained in () F. The expression V¢’ quantifies over all arguments in
the collection & while the semantics of [X]p uses the preorder over bodies of
evidence to express that ¢ holds at every equally strong or stronger argument
in the preorder.

A number of interesting axioms for the logic £;p over the class of total
justification models can be shown to be sound.® Besides the standard axioms
of the logic for irrevocable and defeasible knowledge (8], this includes:

Necessitation Rules for both V¥ and [<]

S5-axioms for V¢
S4-axioms for [<]
[=]Ke = K[=]p
VUKp — KV
VU Kpgp — Kp¥elp
Ve — [
In the context of total justification models, we add a totality axiom for bodies

of evidence (arguments): V(¢ V [X]Y) AV (¥ V [X]p) = V@ V VY

8 Note that in the specific context of the logical system of [18], the axioms of van Benthem
and Pacuit hold for general justification models. In particular also the reduction axioms in
the dynamic approach of van Benthem and Pacuit are sound in the class of all justification
models.
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Justifiable beliefs. In the above logical setting we can encoded a number of
important statements as follows:

Proposition 3. An agent believes @ iff every argument can be strengthened
to a justification for @, i.e.

VFIF' = F(VF" = F'((1F" € Q))

This fact can be captured by the following validity: Bp <= V¢’(=X)justp.
Or more explicitly as: Bp <= V(X)[=<]suppp

To prove this proposition we first state and prove the following Lemma:
Lemma 1. An agent believes @ iff all maximal (in the sense of strength order)
arguments supports @, i.e. VF € Max<E(F C Q) where Maxz<& = {F €
E|F A F forany F' € £}.
Proof

¢ In the direction from left to right, we start from a given justification model
M in which BQ is true at s. So we know that bestS C Q. Let F € Max<€
and t € (| F. Then F C E}, so F =< E;. Suppose t ¢ bestS. Then Jw <g t,
so By < E,, so F' < E,,. This contradicts F' € Maz<E. Then t € bestS, so
N F C bestS. Hence 1 F C Q.

e In the direction from right to left we assume as given a justification model
M and a state s such that VF € Maz<E((F C Q). Let t € bestS. Suppose
E: ¢ Max<E. Then IF € € such that By < . Let w € (F’, so F' C E,,,
so I' < E,,. Then E; < E,,, so w <g t. This contradicts ¢t € bestS. Hence,
E, € Max<€&. Then, t € ((E; C Q. Hence t € @, so bestS C Q. Hence, BQ
is true at s.

Now we can prove Proposition 3.
Proof

¢ In the direction from left to right, we start from a given justification model
M in which BQ is true at s. Let F' € £. Then F can be strengthened to a
maximal argument F’, i.e. 3F' »= F(F' € Maxz<€). Indeed since S is finite,
so is £&. By Lemma 1, since BQ is true at s and F' € Maz<€&, (F' C Q.
So F' supports Q). Let F” > F’. Then F” € Max<€ and by Lemma 1,
NF" C Q. So F” supports Q. Then, F’ is a justification for ). Hence, F
can be strengthened to a justification for Q.

e In the direction from right to left we assume as given a justification model
M and a state s such that VFIF' = F(VF" = F/(F" € Q)). Let F €
Max<€. Then F = F'. Take F" := F. Hence, (| F C Q. By Lemma 1, BQ
is true at s.

Proposition 4. An agent believes @) conditional on P iff every argument
consistent with P can be strengthened to a justification for @ given P, i.e.

VE(\FNP#£0=3F = F(\F'nP¢)AVF" = F'((\F"nPCQ))
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To prove Proposition 4, we first state and prove the following Lemma

Lemma 2. An agent believes ) conditional on P iff all maximal (in the sense
of strength order) arguments consistent with P supports @) conditional on P,
ie. VF € &(F € MazB€ = NF NP C Q) where MazB& = {F € &€ |
NFNP#Qand F A F forany F' € E(F' NP #0)}.

Proof

¢ In the direction from left to right, we start from a given justification model M
in which BYQ is true at s. So we know that bestP C Q. Let F' € Maz£€ and
te NFNP. Then F C Ey, so F < Ey;. Suppose t ¢ bestP. Then Jw <g t,
so By < Fy, so F < E,. This contradicts F' € Maxi. Then t € bestP. So
we proved that Vt(t € (\F N P =t € bestP). Hence, (\F N P C bestP, i.e.
NFNPCQ.

e In the direction from right to left we assume as given a justification model
M and a state s such that VF € £(F € MaxE& = NFNP C Q). Let
t € bestP. Then E; NP # 0. Suppose E; ¢ Maxié’. Then IF’ € &£
such that (NF' NP # 0) and E; < F'. Let w € (\F' NP, so F' C E,, so
F’" < E,. Then E; < E,, so w <g t. This contradicts ¢t € bestP. Hence,
E; € MaxBE. Then, t € E;NP C Q. Hence t € Q. So we proved that
Vi(t € bestP =t € Q). Hence, bestP C @, i.e. BPQ is true at s.

Now we can prove Proposition 4.
Proof.

e In the direction from left to right, we start from a given justification model
M in which B Q is true at s. Let F' € &€ such that F is consistent with P,
iie. FNP#QP. Then F can be strengthened to a maximal argument F’
consistent with P, i.e. 3F’ = F(F' € Max£&). Indeed since S is finite, so is
£. By Lemma 2, since BYQ is true at s and F’ € MaxBE, N F'NP C Q. So
F’ supports @Q conditional on P. Let F” = F'. Then F"' € Maxz£€ and by
Lemma 2, | F”"NP C Q. So F” supports Q conditional on P. Then, F” is a
justification for @ given P. Hence, F' can be strengthened to a justification
for @ given P.

¢ In the direction from right to left we assume as given a justification model M
and a state s such that VE(NFNP #£0=3IF = F(NF' NP ¢ OAVF" =
F'(NF"NP CQ))). Let F € MaxEE. Then F = F'. Take F" := F.
Hence, NF NP C Q. By Lemma 2, BTQ is true at s.

In the remainder of this section we restrict ourselves to justification mod-

els with a total preorder. In such total justification models, every belief is a
justified belief.

Proposition 5. In total justification models, an agent believes @ iff there
exists a justification F for @, i.e. IFVEF' = F(NF' C Q)
This fact can be captured by the following validity:

Bp <= 3%justp
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Or writing it more explicitly: Bp <= 3°’[<X]suppp
Proof.

e In the direction from left to right, we start from a given total justification
model M in which BQ is true at s. By Proposition 3, every argument can
be strengthened to a justification for Q). Take any argument and strengthen
it, then we have a justification for Q.

e In the direction from right to left we assume as given a total justification
model M and a state s such that there exists a justification F' for Q). We
have to show that s = BQ. Since F is a justification for @, by Definition 6,
VF' € E(F < F' = N F’' C Q). Take any argument G such that F < G
or G F. I F<XG NGCQ. IfG=F, G can be strengthened to a
justification for @ since G < F and VF’ € & such that ' < F/,(F’ C Q.
By Proposition 3, BQ is true at s.

Proposition 6. In total justification models, an agent defeasibly knows @) at
s iff there exists a sound (true) justification F' for @ at s, i.e.

IF(s € (\FAVE = F((F' Q)

This fact can be captured by the following validity: Kpp <= 3°’(sound A

justp)

Proof.

e In the direction from left to right, we start from a given total justification
model M in which KpQ is true at s. Then Vi(t <p s = t € Q). So,
Vi(Es X By =t € Q). Take F':= E,. Since s€ ((Es, s€[F. Let F/ = F
and t € (\F’. Then F' C F;, so F' X Fy. Since Es <X F', E; < E;. Then
t<gs,s0t€Q. Hence, AF (s e FAVE' = F(NF' CQ)).

e In the direction from right to left we assume as given a total justification
model M and a state s such that 3F(s € (VF AVF' = F(OWF' C Q)).
Let t <gp s. We want to show that t € ). As we know, s € (| F. Then
FCEs s0F=<F; Sincet <g s, E; < F;. Then F < F;. By assumption,
NE: CQ. So, t € Q. Hence, KpQ is true at s.

Proposition 7. An agent believes @ conditional on P iff there exists a justi-
fication F for Q given P, ie. AF(NFNP #ADAVF' = F(NF' NP CQ))

Proof.

¢ In the direction from left to right, we start from a given total justification
model M in which BFQ is true at s. By Proposition 4, every argument con-
sistent with P can be strengthened to a justification for Q) given P. Take any
argument consistent with P and strengthen it, then we have a justification
for @ given P.

e In the direction from right to left we assume as given a total justification
model M and a state s such that there exists a justification F' for @ given P.
We have to show that s = BYQ. Since F is a justification for Q given P, by
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Definition 8, (YFNP # @ and VF' € E(F < F' = (N F' NP C Q). Take any
argument G consistent with P ( (VG N P # () such that F < G or G <X F.
IfFXG NGNPCQ. If G=F,G can be strengthened to a justification
for @ given P since G < F and VF' € £ such that F < F/,F'NP C Q.
By Proposition 4, BYQ is true at s.

Conclusion

We have provided a general setting of justification models which subsumes
plausibility models, counting and weighting models as well as evidence models.
With this line of work we enhance the investigations into different types of
models that connect evidence and beliefs, relating it to the investigations in
neighborhood structures in [18,16,17] and our recent work on topological models
in [2,5,3,4]. From a logic-technical point of view, we have introduced a number
of sound axioms for the logic of justifiable beliefs. In this context we were are
able to express beliefs supported by a justification and knowledge supported by
an agent’s sound justification. Similar concepts are investigated in the context
of topological models in [4] in which a complete axiom system is provided. An
initial investigation of the relation between beliefs and arguments as studied in
formal argumentation theory, ties in with the present research and is further
explored in [13].

We have studied in this paper the dynamics of justification models under
updates with new truthful information and indicated an interesting problem
that we encountered in the context of updating counting models. There are
of course a number of other ways in which a given justification model can be
transformed into a new one. One can for instance add a new body of evidence
to a given structure and give it a degree of plausibility in relation to the other
bodies of evidence. This would correspond to the action of adding soft evidence
of which the agent is not fully certain. We have left the theory of soft evidence
upgrades for future work.

From a philosophical point of view, one can argue that the introduced set-
ting in this paper is too restrictive as it can only deal with beliefs supported by
genuine evidence and leaves no room for an agent’s biases (or defaults). In a
number of applications or scenarios, one may wantt to consider cases in which
an agent may have some preferences that are not genuinely based on (external)
evidence but based on the trustworthiness of her (internal) senses and reasons.
To model such scenarios it would be necessary to introduce a refined type of
justification model that contains evidence sets consisting of two types: genuine
evidence and biases. In refined justification models, the definition of F can be
given by:

Definition 11 F = Ey U B such that Ey is the family of evidence sets repre-
senting the genuine evidence the agent has while B is the family of evidence
sets representing the prior biases of the agent.

In such a refined setting it is natural to impose a condition on B that captures
the fact that all biases b € B should strictly increase the strengh of a body of
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evidence. Formally, F' < F'U {b} such that F'U {b} € £. It is then interesting
to note that in a refined justification model, we can consider a “softer” kind of
support: an argument F weakly supports Q (or F is a “soft” argument for Q)
conditional on some set B’ C B of biases iff F'U B’ supports Q.

The (refined) justification models provide the technical underpinning that
is needed to give a formal account of K. Leher’s justification games, the first
steps of which are provided [9].
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