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Abstract

Paraconsistent logics are logics that in contrast to classical and intuitionistic logic,
do not trivialize inconsistent theories. In this paper we show that the famous modal
logics B and S5, can be viewed as paraconsistent logics with several particularly
useful properties.
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1 Introduction
One of most counter-intuitive properties of classical logic (as well as of its
most famous rival, intuitionistic logic) is the fact that it allows the inference of
any proposition from a single pair of contradicting statements. This principle
(known as the principle of explosion, ‘ex falso sequitur quodlibet’) has repeat-
edly been attacked on philosophical ground, as well as because of practical
reasons: in its presence every inconsistent theory or knowledge base is totally
trivial, and so useless. Accordingly, over the last decades a lot of work and
e↵orts have been devoted to develop alternatives to classical logic that do not
have this drawback. Such alternatives are known as paraconsistent logics.

In this paper we embark on a search for a paraconsistent logic which has
particularly important properties. The most important of them is what is
known as the replacement property, which basically means that equivalence of
formulas implies their congruence. We show that the minimal paraconsistent
logic which satisfies our criteria is in fact the famous Brouwerian modal logic
B (also known as KTB [13,22]). This logic, in turn, is also shown to be a
member of the well-studied family of paraconsistent logics known as C-systems
([16,18,19]). We further show that B is very robust paraconsistent logic in the
sense that almost any axiom which has been used in the context of C-systems
is either a theorem of B, or its addition to B leads to a logic which is no longer

1 Both authors were supported by the Israel Science Foundation under grant agreement
817/15.
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paraconsistent. There is exactly one (rather notable) exception, and the result
of adding this exception to B is another famous modal logic: S5.

2 Paraconsistent Logics
We assume that all propositional languages share the same set {P1, P2, . . .} of
atomic formulas, and use p, q, r to vary over this set. The set of well-formed
formulas of a propositional language L is denoted by W(L), and ', ,� will
vary over its elements.

Definition 2.1 A (Tarskian) consequence relation (tcr) for a language L is
a binary relation ` between sets of L-formulas and L-formulas, satisfying the
following three conditions:

Reflexivity : if  2 T then T `  .
Monotonicity : if T `  and T ✓ T 0 then T 0 `  .
Transitivity : if T `  and T, ` ' then T ` '.

Definition 2.2 A propositional logic is a pair L = hL,`i, where ` is a tcr for
L which satisfies the following two conditions:

Structurality : if T ` ' then �(T ) ` �(') for any substitution � in L.
Non-triviality : p 6` q for any distinct propositional variables p, q.

Various general notions of paraconsistent logics have been considered
(see, e.g., [14,2,3,1]). In this paper we focus on a particular class of para-
consistent logics, which extend the positive fragment of classical logic as follows.

Notation: LCL+ = {^,_,�}, LF

CL = {^,_,�,F} and LCL = {^,_,�,¬}.

Definition 2.3 IL+ is the minimal logic L in LCL+ such that:

• T `L A � B i↵ T , A `L B

• T `L A ^B i↵ T `L A and T `L B

• T , A _B `L C i↵ T , A `L C and T , B `L C

CL+, the LCL+ -fragment of classical logic, is obtained by extending IL+ with
the axiom A _ (A � B). CLF, the full classical logic (in LF

CL) is obtained by
extending CL+ with the axiom F �  (making F a bottom element.) 2

Definition 2.4 A propositional logic L = hL,`Li is ¬-classical if LCL ✓ L,
the LCL+ -fragment of L is CL+, and L satisfies the three conditions concerning
_,^ and � that were used in Definition 2.3 to characterize IL+.

2 Another natural alternative for obtaining classical logic is to use the language LCL rather
than LF

CL, and extend CL+ with the axioms [t] ¬ _ and [¬ �] (¬ � ( � ')). To avoid
confusions with the paraconsistent negation which is added to LCL+ below, we use in this
paper the approach with F.
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Definition 2.5 A ¬-classical logic is paraconsistent (with respect to ¬) if ¬
satisfies the following conditions: (i) 6`L (p ^ ¬p) � q, (ii) 6`L p � ¬p, and (iii)
6`L ¬p � p.

Remark 2.6 Most of the earlier definitions of paraconsistent logics do not
explicitly require conditions (ii) and (iii). However, they have been required in
the literature for negation in general (cf. [25,26,29,4,2]. In the latter two papers
a connective which satisfies these two conditions is called weak negation). In
[3,1] paraconsistent logics were defined using an even more restrictive condition
(called ¬-containment in classical logic) on a connective ¬ to be counted as a
negation in a logic L.That condition implies conditions (ii) and (iii) above, but
they do su�ce for the purposes of this paper.

The above definition mentions only negative properties of negation. Below
is a list of positive properties that negation has in classical logic that might be
desirable also in the context of paraconsistent logics:

Definition 2.7 Let L = hL,`Li be a propositional logic for a language L with
a unary connective ¬.
• ¬ is complete (for L) if it satisfies the following version of the law of excluded
middle: (LEM) T `L ' whenever T , `L ' and T ,¬ `L '.

• ¬ is right-involutive (for L) if ' `L ¬¬' every formula ' (equivalently: for
atomic '), and is left-involutive (for L) if ¬¬' `L ' for every formula '
(equivalently: for atomic '). ¬ is involutive if it is both right- and left-
involutive.

• ¬ is contrapositive (in L) if ¬' `L ¬ whenever  `L '.

Remark 2.8 It is easy to verify that if L is ¬-classical then:
• ¬ is complete for L i↵ `L ¬' _ ' for every '.

• ¬ is right-involutive for L i↵ `L ' � ¬¬' for every '.

• ¬ is left-involutive for L i↵ `L ¬¬' � ' for every '.

• ¬ is contrapositive for L i↵ `L ¬' � ¬ whenever `L  � '.

The next proposition shows that ¬-classical paraconsistent logics cannot
enjoy all of the above properties of negation at the same time:

Proposition 2.9 A ¬-classical logic in which ¬ is complete, right-involutive,
and contrapositive cannot be paraconsistent.

Completeness (or the law of excluded middle) is a very basic and natural
property of negation, which is particularly important to retain in paraconsis-
tent logics (which reject the other basic principle which characterizes classical
negation - see Footnote 2). The minimal extension of CL+ which has complete
negation is the paraconsistent logic CLuN, introduced by Batens under the
name of PI in [6] and further studied in [7,9]; a Hilbert-style system for it is
given in Fig. 1.
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Demanding just completeness of our paraconsistent negation is obviously
not su�cient, though, and we would like to preserve as much of the main
classical properties of negation as possible. Proposition 2.9 means that we
cannot have a complete paraconsistent negation which is both contrapositive
and right-involutive. So we should choose between these two properties. On
the other hand the demand of being left-involutive causes no problem, and so
we have no reason not to impose it. Doing this leads to the paraconsistent
logic known in the literature as Cmin (used by the authors in [15,14] as the
basis 3 for their taxonomy of C-systems), which is the minimal extension of
CL+ which has both a complete and left-involutive negation. Fig. 1 contains
a Hilbert-style system for this logic as well.

Inference Rule: [MP]
  � '

'

Axioms of HCL+:
[�1]  � (' �  )
[�2] ( � (' � ⌧)) � (( � ') � ( � ⌧))
[^�]  ^ ' �  ,  ^ ' � '
[�^]  � (' �  ^ ')
[�_]  �  _ ', ' �  _ '
[_�] ( � ⌧) � ((' � ⌧) � ( _ ' � ⌧))
[�3] (( � ') �  ) �  

Axioms of HCLuN : The axioms of HCL+ and:
[t] ¬ _  

Axioms of HCmin: The axioms of HCLuN and:
[c] ¬¬ �  

Fig. 1. The proof systems HCL+, HCLuN and HCmin

Returning to the choice between having a negation which is involutive and
a negation which is contrapositive, we note that almost no paraconsistent logic
studied in the literature has a contrapositive negation 4 . In this paper we
investigate what happens if we do follow this choice. As we show below, doing
this is more challenging than securing the other properties, as it cannot be
achieved by just adding axioms, and so another, more sophisticated way is
needed.

3 In [5] it is argued that the logic BK, introduced in the next subsection, is more appropriate
as the basic C-system.
4 An early notable exception is the system CC! studied in [38], and extended to a S5-like
system in [21]. More recent related works are mentioned in Remark 4.3.
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2.1 The family of C-systems

One of the oldest and best known approaches to paraconsistency is da Costa’s
approach ([16,18,19]), which seeks to allow the use of classical logic whenever
it is safe to do so, but behaves completely di↵erently when contradictions are
involved. This approach has led to the introduction of the family of Logics of
Formal (In)consistency (LFIs) ([14,15]). This family is based on the idea that
the notion of consistency can be expressed in the language of the logic itself.
In most of the LFIs studied in the literature this is done via a consistency
operator. The expected “classical” behavior of a “consistent” formula  for
which � holds, is expressed via the following conditions:

Definition 2.10 Let L be a logic for L. A (primitive or defined) connective �
of L is a consistency operator with respect to ¬ if the following conditions are
satisfied:

• (b) `L (� ^ ¬ ^  ) � ' for every  ,' 2 W(L).
• (n1) 6`L(�p ^ ¬p) � q

• (n2) 6`L(�p ^ p) � q

We say that � is a strong consistency operator with respect to ¬ if it is a
consistency operator which satisfies also (k) � _(¬ ^ ) for every  2 W(L).
Proposition 2.11 Let L be a ¬-classical paraconsistent logic.
• If � is a consistency operator with respect to ¬, then

N

 =Df (¬ ^ ) � � 
is a strong consistency operator with respect to ¬.

• For every ',
N

'  =Df (¬ ^  ) � (�' ^ ¬' ^ ') is a strong consistency
operator.

• If � is a consistency operator while
N

is a strong consistency operator, then
`L �  �

N

 .

• A strong consistency operator for L is unique up to equivalence.

Definition 2.12 Let L be a ¬-classical logic. L is a C-system if it is paracon-
sistent (w.r.t. ¬) and has a strong consistency operator � (w.r.t. ¬).
Theorem 2.13 A ¬-classical paraconsistent logic is a C-system i↵ it is an
extension (perhaps by definitions) of CLF (see Definition 2.3).

The following is what we believe best deserves to be called the basic C-
system (the argument is given in [5], see also Footnote 2):

Definition 2.14 The logic BK is obtained by extendingCL+ with the axioms
(b) and (k).

Extensions of BK with various subsets 5 of the following axioms constitute the
main C-systems studied in the literature (] 2 {_,^,�}):

5 There are several subsets the addition of which to BK results in the loss of paraconsistency,
for their full list see [5].
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(c) ¬¬' � ' (e) ' � ¬¬'
(nl

^) ¬(' ^  ) � (¬' _ ¬ ) (nr
^) (¬' _ ¬ ) � ¬(' ^  )

(nl
_) ¬(' _  ) � (¬' ^ ¬ ) (nr

_) (¬' ^ ¬ ) � ¬(' _  )
(nl

�) ¬(' �  ) � (' ^ ¬ ) (nr
�) (' ^ ¬ ) � ¬(' �  )

(o1
] ) �' � �('] ) (o2

] ) � � �('] )
(a]) (�' ^ � ) � �('] ) (a¬) �' � �¬'
(l) ¬(' ^ ¬') � �' (d) ¬(¬' ^ ') � �'
(i1) ¬�' � ' (i2) ¬�' � ¬'

In what follows we will explore which of the axioms above is already deriv-
able in the logic NB studied below, and which can be added to it while pre-
serving its paraconsistency.

3 The Logic NB
3.1 Motivation:

Recall that we set out to find a paraconsistent logic which has a negation
which is complete, left-involutive and contrapositive (note that by Proposition
2.9, we cannot also demand right-involutiveness). As we show below, having
a contrapositive negation ensures the desirable property (which both classical
and intuitionistic logics enjoy) of substitution of equivalents, also known as the
replacement property (or self-extensionality [41]):

Definition 3.1 Let L = hL,`Li be a logic.

• Formulas  ,' 2 W(L) are equivalent in L, denoted by  a`L ', if  `L '
and ' `L  .

• Formulas  ,' 2 W(L) are congruent (or indistinguishable) in L, denoted by
 ⌘L ', if for every formula � and atom p it holds that �[ /p] a`L �['/p].

• L has the replacement property if any two formulas which are equivalent in
L are congruent in it.

The majority of paraconsistent logics considered in the literature do not
have the replacement property. Can we construct (¬-classical) paraconsistent
logics which do enjoy the replacement property and have a reasonable (at least
complete) negation? The next proposition shows that as long as we want ¬
to be complete, this goal cannot be achieved for extensions of CLuN by the
usual way of adding axioms that force the strong replacement condition, where
a ¬-classical logic L satisfies this condition if ' �  , � ' `L �[ /p] � �['/p]
for every atom p and formulas ', ,�.

Proposition 3.2 Let CAR 6 be the logic which is obtained from CLuN by
adding to it the following schema as an axiom:

( � ') ^ (' �  ) � (¬ � ¬')

6 It is easy to show that our CAR is equivalent to the logic that is called CAR in [17]. In
Chapter 3 of [35] the same logic (with yet another axiomatization) is called Le.



Avron, Zamansky 27

Then CAR is not paraconsistent.

The above proposition entails that in order to develop paraconsistent exten-
sions of CLuN that enjoy the replacement property, the inference of ¬' � ¬ 
from ' �  and  � ' should be forced only in the case where the premises
are theorems of the logic. This can be done by including this rule in the corre-
sponding proof systems not as a rule of derivation, but just as a rule of proof,
that is: a rule that is used only to define the set of axioms of the system, but
not its consequence relation. To make ¬ also contrapositive, it would be better
to adopt as a rule of proof the inference of ¬' � ¬ from  � ' alone. The
next proposition implies that as long as we use the language LCL, it would also
su�ce for forcing the replacement property.

Proposition 3.3 Let L be a ¬-classical logic in LCL which extends IL+, in
which `L ¬' � ¬ whenever `L  � '. Then L has the replacement property.

The above considerations lead to the following definition of the logic NB:

Definition 3.4 Th(NB) is the minimal set S of formulas in LCL, such that:

(i) S includes all axioms of HCmin.

(ii) S is closed under [MP] and the following rule:

[CP]
`  � '

` ¬' � ¬ 
HNB is the Hilbert-type system whose set of axioms is Th(NB) and has
[MP] for � as its sole rule of inference.

NB is the logic in LCL which is induced by HNB.

Obviously, `NB ' i↵ ' 2 Th(NB). Note again that [CP] is not a rule of
inference of HNB, but only a rule of proof, i.e., it is used only for defining its
set of axioms. This is similar to the role that the necessitation rule (from  
infer 2 ) usually has in Hilbert-type systems in modal logics. 7

The following lemma will be useful in the sequel:

Lemma 3.5

(i) If `NB ' then for every  , ¬' `NB  .

(ii) `NB ¬(' ^  ) � (¬' _ ¬ )
(iii) `NB ¬¬¬' ⌘ ¬' (that is, `NB ¬¬¬' � ¬' and `NB ¬' � ¬¬¬').

Remark 3.6 The first item of Lemma 3.5 implies that if we take F to be an
abbreviation of ¬(P1 � P1) (say), then for every ', `NB F � '. Hence we

7 More precisely: whether necessitation is taken in modal logics as a rule of proof or a rule
of derivation depends on the intended consequence relation. If the local one of preserving
truth in worlds is used, then the rule can be taken only as a rule of proof. In contrast, if the
global one of preserving validity in frames (that is, truth in all worlds of a frame) is used,
then the rule should be taken as a rule of derivation.
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may assume that the language of NB is an extension of LF

CL, and that every
instance of a classical tautology in LF

CL is in Th(NB).

Next we define a Gentzen-style system for NB.

Notation: ¬S = {¬' | ' 2 S}.
Definition 3.7 The system GNB is obtained from the Gentzen-style system
LK for CL ([20]) by replacing its left introduction rule for negation ([¬)]) by
the rule:

[¬)]B
�,¬� )  

¬ ) ¬�,�
Theorem 3.8 T `GNB ' (i.e., there is a finite � ✓ T such that � ) ' is
derivable in GNB) i↵ T `NB '.

Proposition 3.9 GNB does not admit cut-elimination.

Proof. Obviously, `GNB ¬(p_q),¬(p_q) ! r ) r. By applying [¬)]B we get
from this that `GNB ¬r ) ¬(¬(p_q) ! r), p_q. Since also `GNB p_q ) p, q,
an application of the Cut rule yields that `GNB ¬r ) ¬(¬(p _ q) ! r), p, q.
On the other hand a straightforward (though tedious) search reveals that this
sequent has no cut-free proof in GNB. 2

In the next subsection we will see that GNB does admit a weaker version
of cut-elimination and this su�ces for making it a decidable system which has
the crucial subformula property.

3.2 Kripke-style Semantics for NB

For providing adequate semantics for NB, we use the following framework of
Kripke frames for modal logics.

Definition 3.10 A triple hW,R, ⌫i is called a NB-frame for LCL
8 , if W is a

nonempty (finite) set (of “worlds”), R is a reflexive and symmetric relation on
W , and ⌫ : W ⇥W(LCL) ! {t, f} satisfies the following conditions:

• ⌫(w, ^ ') = t i↵ ⌫(w, ) = t and ⌫(w,') = t.

• ⌫(w, _ ') = t i↵ ⌫(w, ) = t or ⌫(w,') = t.

• ⌫(w, � ') = t i↵ ⌫(w, ) = f or ⌫(w,') = t.

• ⌫(w,¬ ) = t i↵ there exists w0 2 W such that wRw0, and ⌫(w0, ) = f .

Definition 3.11 Let hW,R, ⌫i be a NB-frame.

• A formula ' is true in a world w 2 W (w � ') if ⌫(w,') = t.

• A sequent s = � ) � is true in a world w 2 W (w � s) if ⌫(w,') = f for
some ' 2 �, or ⌫(w,') = t for some ' 2 �. Equivalently, w � s if w � I(s),

8 In the literature on modal logics one usually means by a “frame” just the pair hW,Ri,
while we find it convenient to follow [34], and use this technical term a little bit di↵erently,
so that the valuation ⌫ is a part of it.



Avron, Zamansky 29

where I(s) is the usual interpretation of s (as defined, e.g., in the proof of
Theorem 3.8).

• A formula ' is valid in hW,R, ⌫i (hW,R, ⌫i |= ') if it is true in every world
w 2 W .

• A sequent s is valid in hW,R, ⌫i (hW,R, ⌫i |= s) if it is true in every world
w 2 W .

Definition 3.12

• Let T [ {'} be a set of formulas in LCL. ' semantically follows in NB from
T if for every NB-frame hW,R, ⌫i and every w 2 W : if w �  for every
 2 T then w � '.

• Let S [ {s} be a set of sequents in LCL. s semantically follows in NB from
S if for every NB-frame W, if W |= s0 for every s0 2 S, then W |= s. s is
NB-valid if s semantically follows in NB from ; (that is, s is valid in every
NB-frame).

Proposition 3.13

(i) If ' is a theorem of NB (that is, ' 2 Th(NB)), then ' is valid in every
NB-frame.

(ii) If T `NB ' then ' semantically follows in NB from T .

(iii) Let S [ {s} be a set of sequents. If S `GNB s then s semantically follows
in NB from S. In particular: if `GNB s then s is NB-valid.

Now we turn to prove the completeness of NB for its possible-worlds se-
mantics, as well as the analyticity of GNB. The latter property is defined as
follows:

Definition 3.14 Let G be a Gentzen-type system in a language L.
• Let F be a set of formulas in L. A proof in G is called F-analytic if every
formula which occurs in it belongs to F .

• Let S [ {s} be a set of sequents in L. A proof in G of s from S is called
analytic if it is F-analytic, where F is the set of subformulas of formulas in
S [ {s}.

• G has the (strong) subformula property if whenever `
G

s (S `
G

s), there is
an analytic proof of s (from S).

Theorem 3.15 Let S[{s} be a finite set of sequents in LCL. If s semantically
follows in NB from S then s has an analytic proof in GNB from S.

Proof. Suppose s does not have an analytic proof in GNB from S. We con-
struct a NB-frame in which the elements of S are valid, but s is not.

Denote by F the set of subformulas of formulas in S [ {s}. Call a sequent
� ) � F-maximal if the following conditions (i) � [� = F , and (ii) � ) �
has no F-analytic proof from S.
Lemma 1. Suppose � [ � ✓ F , and � ) � has no F-analytic proof from
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S. Then � ) � can be extended to an F-maximal sequent �0 ) �0 (that is,
� ✓ �0 and � ✓ �0).
Proof of Lemma 1. Let �0 ) �0 be a maximal extension of � ) � that
consists of formulas in F , and has no F-analytic proof from S. (Such �0 ) �0

exists, because F is finite.) To show that �0 ) �0 is F-maximal, assume for
contradiction that there is ' 2 F such that ' 62 �0 [�0. Then the maximality
of �0 ) �0 implies that both �0 ) �0,' and ',�0 ) �0 have F-analytic proofs
from S. But then we can get an F-analytic proof from S using these two proofs
together with an application of a cut on ' to their conclusions. (Note that since
' 2 F , the resulting proof of �0 ) �0 is still F-analytic.) This contradicts our
assumption about �0 ) �0.

Since s has no F-analytic proof from S, it follows from Lemma 1 that s can
be extended to an F-maximal sequent �⇤ ) �⇤.

Let W be the set of all F-maximal sequents. Since F is finite, so is W .
Since (�⇤ ) �⇤) 2 W , W is also nonempty. Define a relation R on W as
follows: (�1 ) �1)R(�2 ) �2) i↵ for every formula ', if ¬' 2 �1 then
' 2 �2, and if ¬' 2 �2 then ' 2 �1. Obviously, R is symmetric. That it
is also reflexive follows from the fact that if {¬','} ✓ � then � ) � has a
cut-free proof in GNB (since it can be derived from the axiom ' ) ' using
[)¬] and weakenings). This fact and the F-maximality of a sequent � ) � in
W imply that if ¬' 2 � then ' 2 �, and so (� ) �)R(� ) �). Next, let W
be the NB-frame hW,R, ⌫i in which W and R are as above, and ⌫ is obtained
by letting ⌫(� ) �, p) = t i↵ p 2 � (p atomic).

Lemma 2. Let � ) � 2 W and ' 2 F . Then ⌫(� ) �,') = t if ' 2 �, and
⌫(� ) �,') = f if ' 2 �.

Proof of Lemma 2. By induction on the complexity of '.
Since �⇤ ) �⇤ is an extension of s, it follows from Lemma 2 that if s =

� ) �, then ⌫(�⇤ ) �⇤,') = t for every ' 2 �, while ⌫(�⇤ ) �⇤,') = f for
every ' 2 �. It follows that �⇤ ) �⇤ 6� s, and so W 6� s.

Finally, let s0 = (�0 ) �0) 2 S, and let w = (� ) �) 2 W . It is impossible
that w is an extension of s0, because w has no F-analytic proof from S. It
follows that either ' 2 � for some ' 2 �0, or ' 2 � for some ' 2 �0. By
Lemma 2 this implies that either ⌫(w,') = f for some ' 2 �0, or ⌫(w,') = t
for some ' 2 �0. Hence w � s0 for every w 2 W , and so W � s0 for every
s0 2 S. 2

Corollary 3.16 GNB has the subformula property: if S `GNB s then s has
an analytic proof in GNB from S. In particular: if `GNB s then s has an
analytic proof in GNB. 9

Corollary 3.17 If � is finite then � `NB ' i↵ ' semantically follows in NB
from �.

9 This implies that if `GNB s then s has a proof in GNB in which all cuts are analytic (that
is, the cut formulas are subformulas of s).
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The above can be strengthened to full completeness (we leave the proof to
the reader):

Theorem 3.18 For every theory T , T `NB ' i↵ ' semantically follows in
NB from T .

Remark 3.19 GNB is a version of the Gentzen-type system forB given in [39]
(and described in [40]). Unlike our proof, the analyticity of the assumptions-
free fragment of that system is proved in [39] by syntactic 10 means.

3.3 Basic Properties of NB

From Proposition 2.9 and Note 2.8 it follows that a logic which has a complete,
left-involutive and contrapositive negation should contain the logic NB. The
next proposition shows that NB is in fact the minimal logic of this type:

Proposition 3.20 NB is the minimal extension of CL+ in LCL in which ¬
is complete, contrapositive, and left-involutive.

Proposition 3.21 NB is paraconsistent and has the replacement property.

Theorem 3.22 NB is decidable.

Proof. Given a formula ' (or a finite set of formulas � [ {'}), the number of
sequents which consist only of subformulas of ' (or � ) ') is finite. Hence it
easily follows 11 from Theorem 3.16 that it is decidable whether `GNB ' (or
`GNB � ) ') or not. 2

3.4 NB as a C-system

From Note 3.6 it follows that we may assume (as we do from this point on) that
the language of NB includes F, and that NB is an extension of CLF. Therefore
Theorem 2.13 implies thatNB (and any of its paraconsistent extensions) is a C-
system. From Proposition 2.11, the replacement property of NB, and the first
item of Lemma 3.5 it further follows that (any paraconsistent extension in LCL

of) NB has a unique (up to congruence) strong consistency operator �, which
can be defined as �' =def ' ^ ¬' � F, or as �' =def (' ^ ¬') � ¬(' � ').

We now check which of the schemas listed in subsection 2.1 is valid in NB,
and which can be added to it without losing its paraconsistency.

Proposition 3.23 The following schemas from the list given in subsection 2.1
are provable in NB (in addition to (b), (k), (t) and (c)): (nl

^), (n
r
^), (n

l
_),

(nl,2
� ), (a¬), (a^), and (a_).

Remark 3.24 The fact that (a¬), (a^), and (a_) are all valid in NB means
that NB is almost perfectly adequate to serve as a C-system according to da

10A semantic proof appeared in [23] (Example 5.54), as a particular instance of a general
method for proving analyticity.
11 Instead of using the Gentzen-type system GNB, one can use the semantics of NB in
order to provide a decision procedure for it. This is due to the fact that from the proof of
Theorem 3.15 it follows that a sequent s is NB-valid i↵ it is valid in every NB-frame in
which the number of worlds is at most 2n, where n is the number of subformulas of s.
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Costa’s ideas. The only principle that it misses (as we show is the next theorem)
is (a�). This is the price it pays for being contrapositive and for having the
replacement property. However, this is not a high price, since the language of
{¬,^,_} su�ces for classical reasoning (since its set of primitive connectives
is functionally complete for two-valued matrices).

It is also remarkable that ¬('^ ) is equivalent (and so congruent) in NB
to ¬'_¬ . However, the next theorem shows that the other De Morgan rules
are only partially valid in NB. Another important fact that is shown in the
next theorem is that with one exception (to be dealt with in the sequel), all
the schemas from the list in Subsection 2.1 that are not already derivable in
NB cannot even be added to it without losing its paraconsistency. This shows
that NB is rather robust as a paraconsistent logic.

Theorem 3.25 Let L be obtained by adding to HNB as an axiom any element
of the set {(e), (nl,1

� ), (nr
_), (n

r
�), (a�), (i1), (l), (d)}, or any axiom of the form

(oi
#) (] 2 {^,_,�}, i 2 {1, 2}). Then L is not -paraconsistent.

Proof. We show for the cases of (e) and (nl,1
� ), leaving the rest of the cases to

the reader.

• Suppose (e) is valid in L. Then from Proposition 2.9 it follows that ¬' �
(' � ¬¬ ) for every ', . Since (c) is valid in NB, this implies that `L

¬' � (' �  ).

• Suppose (nl,1
� ) is valid in L. Then `L ¬(' �  ) � '. By applying [CP] we

get that `L ¬' � ¬¬(' �  ). Hence `L ¬' � (' �  ).
2

Remark 3.26 The exception which has not been dealt with in Proposi-
tion 3.23 and Theorem 3.25 is the schema (i2). Now it is not di�cult to show
that (i2) is not provable in NB. In the sequel we show that it can neverthe-
less be added to NB without losing its paraconsistency, and that this addition
leads to another interesting logic.

3.5 NB is the Modal Logic B

The notion of ‘NB-frame’ is very similar to the notion of a Kripke frame used
in the study of modal logics. Indeed, NB is actually (equivalent to) the famous
modal logic which is usually called B or KTB (see e.g. [13]). The language
of B is usually taken to be {^,_,�,F,2} (or {^,_,�,¬,2}, where ¬ denotes
the classical negation). Its semantics is given by Kripke frames in which the
accessibility relation R is again reflexive and symmetric, where the notion of
a ‘Kripke frame’ is defined like in Defn 3.10, except that instead of the clause
there for ¬ we have the following clause for 2:

• ⌫(w,2 ) = t i↵ ⌫(w0, ) = t for every w0 2 W such that wRw0.

Now it is easy to see that with respect to Kripke frames, the language of our
NB and the language of the modal logic B are equivalent in their expressive
power. 2 is definable in the former by 2' =def⇠¬', where ⇠  =def  � F.
On the other hand ¬ is definable in the language of B by ¬' =def⇠2'. It
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follows that the paraconsistent logic NB (whose language is just LCL) and the
modal logic B are practically identical.

It is worth noting that the presentation of the modal B in the form NB is
more concise (and in our opinion also clearer) than the usual one in two ways.
First, NB really has only two basic connectives: � and ¬. (F can be defined
as ¬(' � '), where ' is arbitrary, and _ and ^ can of course be defined in
terms of � and F.) The standard presentation of B needs three connectives:
�, F, and 2. Second, the standard Hilbert-type proof system for B is more
complicated than HNB. It is obtained from (the full) HCL by the addition
of one rule of proof and three axioms. The rule is the necessitation rule (if ` '
then ` 2'). The three axioms are: (K) 2(' �  ) � (2' � 2 ), (T) 2' � '
and (B) ' � 2⇧', where ⇧' =def⇠2⇠'. In contrast, HNB is obtained from
HCL+ by the addition of one rule of proof (which admittedly is somewhat
more complex than the necessitation rule), and just two extremely simple and
natural axioms.

4 The Logic NS5
Following Note 3.26, in this section we investigate the system that is obtained
from NB by the addition of (i2). We start by presenting two schemas which
are equivalent to (i2) over NB.

Lemma 4.1 The logics which are obtained by extending NB with one of the
following schemas are identical.

(i) (i2) (that is: ¬�' � ¬').
(ii) �(¬') (that is: ¬' ^ ¬¬' � F).

(iii) ¬¬' � (¬' �  ).

Definition 4.2 Let HNS5 be the Hilbert-type system which is obtained from
HNB by adding to it as an axiom schema one of the three schemas which were
proved equivalent in Lemma 4.1. NS5 is the logic induced by HNS5.

Remark 4.3 Béziau ([10,11,12] and Batens ([8]) have introduced systems
equivalent to NS5. (NS5 was called Z by Béziau, and A by Batens.) Further
study of this system was done in [37]. The Hilbert-type system HNS5 pre-
sented above is an improved version of the Hilbert-type system for Z presented
in that paper. The same simplified axiomatization of HNS5 was also inde-
pendently discovered by Omori and Waragai and presented in [36]. Actually,
our axiomatization HNB of the modal logic KTB is implicitly given there as
well. 12 At this point it is worth noting also that the realization on which the
present paper is based (that the same method that was applied to S5 can be
applied to other modal logics in order to produce interesting paraconsistent
logics) was first pursued independently in [28,27,30] and in [31,32,33]. Another
investigation of paraconsistent logics from a modal viewpoint, studying also

12We are grateful to an anonymous referee for bringing this paper and these facts to our
attention.
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analytic and cut-free sequent calculi for such logics, is presented in the current
volume ([24]).

Remark 4.4 The following observation leads to a simpler version of HNS5:

¬¬' � (¬' � '),¬' _ ' `IL+ ¬¬' � '

It follows that in order to axiomatize NS5, it su�ces to add to HCL+ the
schemas ¬'_', ¬¬' � (¬' �  ), and the rule [CP] (or to add to CLuN the
schema ¬¬' � (¬' �  ), and the rule [CP]).

Like in the case of NB, we provide a Gentzen-type system and Kripke-style
semantics for it, leaving all proofs in the section to the reader.

Definition 4.5 [GNS5] The system GNS5 is the system which is obtained
from LK by replacing its rule [¬)] by the rule:

[¬)]5
¬� )  ,¬�
¬�,¬ ) ¬�

Theorem 4.6 T `GNS5 ' i↵ T `NS5 '.

Definition 4.7

• An NB-frame hW,R, ⌫i is called a NS5-frame for LCL if R is transitive (in
addition to its being reflexive and symmetric).

• The notions of truth (in worlds) and validity in NS5-frames (of formulas and
sequents) are defined like in Definition 3.11.

• Semantic consequence in NS5 is defined like in Definition 3.12, using NS5-
frames instead of NB-frames.

Proposition 4.8

(i) If ' is a theorem of NS5 then ' is valid in every NS5-frame.

(ii) If T `NS5 ' then ' semantically follows in NS5 from T .

(iii) Let S [ {s} be a set of sequents. If S `GNS5 s then s semantically follows
in NS5 from S. In particular: if `GNS5 s then s is NS5-valid.

Theorem 4.9 Let S [ {s} be a finite set of sequents in LCL. If s semantically
follows in NS5 from S then s has an analytic proof in GNS5 from S.

Theorem 4.9 has for NS5 the same important corollaries as Theorem 3.15
has for NB.

Theorem 4.10 GNS5 has the subformula property: if S `GNS s then s has
an analytic proof in GNS5 from S. In particular: if `GNS5 s then s has an
analytic proof in GNS5.

Theorem 4.11 For finite �, � `NS5 ' i↵ ' semantically follows in NS5 from
�.

Theorem 4.12 NS5 is decidable.
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Proposition 4.13 NS5 is a ¬-classical paraconsistent logic with a complete,
contrapositive, and left-involutive negation. It is also a C-system in which all
the schemas listed in Proposition 3.23 are valid, as well as (i2) and �¬'.
Theorem 4.14 NS5 is equivalent to the famous modal logic S5 (also known
as KT5 or KT45).

Remark 4.15 The modal logic S5 is the logic induced by the class of Kripke
frames in which the accessibility relation is an equivalence relation. Theo-
rem 4.14 follows from this characterization of S5. Note that the standard
Hilbert-type system for S5 is obtained from that of B by replacing the axiom
(B) by the axiom (5) ⇧' � 2⇧'. It is worth noting also that in NS5 2'
(that is: ⇠¬') is equivalent to ¬¬'. (This can easily be shown by using the
semantics, or by using GNS5.)
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Logic and Logical Philosophy 15 (2006), pp. 99–111.

[13] Bull, R. and K. Segerberg, Basic modal logic, in: Handbook of philosophical logic,
Springer, 1984 pp. 1–88.

[14] Carnielli, W., M. E. Coniglio and J. Marcos, Logics of Formal Inconsistency, in:
Handbook of philosophical logic, Springer, 2007 pp. 1–93.



36 A Paraconsistent View on B and S5

[15] Carnielli, W. A. and J. Marcos, A taxonomy of C-systems, in: W. A. Carnielli,
M. E. Coniglio and I. D’Ottaviano, editors, Paraconsistency: The Logical Way to the
Inconsistent, number 228 in Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, 2002 pp. 1–94.

[16] da Costa, N. C. A., On the theory of inconsistent formal systems, Notre Dame Journal
of Formal Logic 15 (1974), pp. 497–510.
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[18] da Costa, N. C. A., J. Y. Béziau and O. A. S. Bueno, Aspects of paraconsistent logic,
Bul. of the IGPL 3 (1995), pp. 597–614.

[19] D’Ottaviano, I.,On the development of paraconsistent logic and da Costa’s work, Journal
of Non-classical Logic 7 (1990), pp. 89–152.

[20] Gentzen, G., Investigations into logical deduction (1934), in German. An English
translation appears in ‘The Collected Works of Gerhard Gentzen’, edited by M. E. Szabo,
North-Holland, 1969.

[21] Gordienko, A. B., A paraconsistent extension of sylvans logic, Algebra and Logic 46
(2007), pp. 289–296.

[22] Hughes, G. E. and M. J. Cresswell, “A new introduction to modal logic,” Psychology
Press, 1996.

[23] Lahav, O. and A. Avron, A unified semantic framework for fully structural propositional
sequent systems, ACM Trans. Comput. Logic 14 (2013), pp. 27:1–27:33.

[24] Lahav, O., J. Marcos and Y. Zohar, It ain’t necessarily so: Basic sequent systems for
negative modalities, this volume.

[25] Lenzen, W., Necessary conditions for negation operators, in: H. Wansing, editor,
Negation in Focus, Walter de Gruyter, 1996 pp. 37–58.

[26] Lenzen, W., Necessary conditions for negation operators (with particular applications
to paraconsistent negation), in: Reasoning with Actual and Potential Contradictions,
Springer, 1998 pp. 211–239.

[27] Marcos, J., Modality and paraconsistency, in: M. Bilkova and L. Behounek, editors, The
Logica Yearbook 2004, Filosofia, 2005 pp. 213–222.

[28] Marcos, J., Nearly every normal modal logic is paranormal, Logique et Analyse 48
(2005), pp. 279–300.

[29] Marcos, J., On negation: Pure local rules, Journal of Applied Logic 3 (2005), pp. 185–219.
[30] Marcos, J., Negative modalities, consistency and determinedness, Electronic Notes in

Theoretical Computer Science 300 (2014), pp. 21–45.
[31] Mruczek-Nasieniewska, K. and M. Nasieniewski, Syntactical and

semantical characterization of a class of paraconsistent logics, Bul. of the Section of
Logic 34 (2005), pp. 229–248.

[32] Mruczek-Nasieniewska, K. and M. Nasieniewski, Paraconsistent logics obtained by J.-Y.
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