Verification Logic:
An Arithmetical Interpretation for Negative
Introspection

Juan P. Aguilera!

Institut fir diskrete Mathematik und Geometrie, Vienna University of Technology,
Austria.

David Fernandez-Duque 2

Centre International de Mathématiques et d’Informatique, University of Toulouse,
France;
Department of Mathematics, Instituto Tecnoldgico Auténomo de México, Mezico.

Abstract

We introduce verification logic, a variant of Artemov’s logic of proofs with new terms
of the form jp! satisfying the axiom schema ¢ — jpl:p. The intention is for j¢! to
denote a proof of ¢ in Peano arithmetic, whenever such a proof exists. By a suitable
restriction of the domain of i-!, we obtain the verification logic VS5, which realizes
the axioms of Lewis’ system S5. Our main result is that VS5 is sound and complete
for its arithmetical interpretation.
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1 Introduction

Over twenty years ago, Artemov introduced the logic of proofs (LP) to give a
provability interpretation of the modal logic S4 [1]. As opposed to the provabil-
ity logic GL, which uses a single modal operator O to represent provability [4],
LP uses proof terms, meant to denote derivations in Peano arithmetic. If ¢ is a
proof term and ¢ a formula, t:p is interpreted as “t is a proof of ¢.” Complex
terms may be built from simpler ones using a handful of operations; in particu-
lar, to every term t there corresponds a ‘proof-checking’ term !¢, allowing us to
realize the modal axiom 4—or positive introspection, Oy — OOp—Dby the LP
axiom t:p —!t:t: (see Section 7 for a definition of ‘realization’). To be precise,
Artemov proved that LP enjoyed two essential properties:
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(i) every theorem of S4 can be realized by a theorem of LP, and
(ii) LP is sound and complete for its arithmetical interpretation.

Since then, LP has inspired a family of logics called justification logics,
which use simlar constructions for ‘justification terms’ but are not necessarily
motivated by mathematical proof (see [2] for an overview). In particular, for
applications in epistemic or doxastic logics, one may wish to work with a justifi-
cation logic realizing the axiom 5—or negative introspection, ~Oy — O=Op—
by some term refuting ¢:¢. Such a logic may be obtained by extending LP
with ‘proof-refuting’ terms of the form 7¢, satisfying —t:p —7t:—t:p. Rubstova
proved that the resulting logic, now known as JS5, indeed realizes all theorems
of S5 [12]. Her proof was non-constructive, but constructive proofs of this re-
sult have since been found; see, for example, [6]. Moreover, there are relational
semantics for LP due to Fitting [5], which may also be used to interpret JS5 as
well as other justification logics realizing many well-known modal logics [11].

Unfortunately, terms of the form 7t satisfying —t:p —7t:—t:p cannot be
interpreted using standard PA proofs, since any standard PA derivation rep-
resented by ¢ proves at most finitely many formulae, and therefore there are
infinitely many formulae ¢ for which ¢:¢ fails. But this means that 7t would
have to be a proof with infinitely many conclusions (one for every formula ¢ not
proven by t), contrary to the nature of standard PA proofs (although Kuznets
and Studer consider derivations having infinitely many conclusions in [10]).

In order to circumvent this issue, Artemov et. al. [3] instead consider a
logic LP(S5), where the term 7¢ satisfies ¢t:(¢p — —s:p) — (¥ —7t:—s:p). This
allows 7t to prove finitely many instances of —s:¢ (only those already appearing
in t), which in turns makes it possible for us to realize any finite collection of
instances of negative introspection—one introduces proof constants ¢ such that
c:(—t:p — —t:p), whence —t:p —7c:—t:p holds. Alternately, Artemov et. al.
propose a variant where one is allowed to introduce new proof constants c
satisfying —t:p — c:—t:p. However, either version of LP(S5) has the drawback
that the constant specification may have to be extended each time we want a
suitable term satisfying a new instance of negative introspection.

In this work, we use a different approach to justification logics, introducing
a new family of systems where proof-checkers are replaced with fact-verifiers of
the form j¢!, similar to the update terms in [9]. We call such systems verifica-
tion logics, and while we define a few natural examples, we focus our attention
on a particular verification logic which we denote VS5. As we show, VS5 real-
izes both axioms 4 and 5, while enjoying a natural arithmetical interpretation
similar to that of LP. It has the advantage that all instances of negative intro-
spection are uniformly realized, while maintaining the finiteness of proofs.

Our main result is that VS5 is complete for this arithmetical interpretation.
Our completeness proof follows the basic structure of Artemov’s in [1], but a
few additional subtleties arise when dealing with the ‘negative introspection
verifiers.’
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Layout. The paper is structured as follows. In Section 2, we introduce proof-
checking terms, the language Li!’ and the logic VL, along with its natural
sublogics, which include VT, VS4 and VS5. In Section 4, we introduce arith-
metical interpretations. The arithmetical completeness proof is divided be-
tween Section 5, which provides a constructive Lindenbaum lemma, and Sec-
tion 6, which constructs suitable proof predicates using the fixed point theorem.
Finally, in section 7, we present some comments on the possible realizability of
S5 by VS5.

2 The logics

In this section we introduce verification logics, and show that some natural
verification logics enjoy the internalization property.

Definition 2.1 We define the terms and formulae of the full language Li! of
verification logic by simultaneous recursion as follows:

tox|t-s| t+s | jo
pup| e o=y |ty

(1)

where each of z and p is an element of a countably-infinite set of proof or
propositional variables. We assume that the two sets of variables are disjoint.

An expression is either a term or a formula. We define the subexpressions
se(e) of an expression € by se(e) = {e} if € is a variable, se(e) = {e} Use(yp) if
e = jp! or e = —p, se(e) = {e} Use(n) Use(p) if e =n+p, n-p, n— pornp.
The subformulae are the subexpressions that are formulae, denoted sf(e), and
the subterms are the subexpressions that are terms, denoted st(e). If 5 € se(e)
we may say that 1 occurs in €, and if ' is a set of expressions, we say that n
occurs in I if 7 is a subexpression of some € € I'.

Next, let us introduce the axioms of full verification logic.

Definition 2.2 The logic VL is defined as the logic generated by modus ponens
and the following sets of axioms:

(i) all propositional tautologies,

(i) t:p = o,
(iii) t:(¢ = ¥) = (s:p = s - t:9)),
) t:p = (t+ 8):p and s:p — (t+ 9):p,
(v) » = iphe.

We will not work with full verification logic, but with one of its natural
sublogics, as defined below.

(iv

Definition 2.3 A natural sublanguage is one obtained by restricting the do-
main of j-! to specific choices of ¢ in (1). In particular, we define:

LiT!’ obtained by restricting the domain of ! to all axioms (including tautolo-
gies);
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Li4!’ obtained by restricting the domain of j-! to axioms and formulae of the
form t:p; and
Lis!’ obtained by restricting the domain of j-! to tautologies, formulae of the

form t:p, and formulae of the form —t:p.

If L is a natural restriction of L., the natural restriction of VL associated to

L is the logic V(L) obtained by restricting the axioms to L and closing under
modus ponens. Any logic obtained in this way is a natural verification logic.
We denote by VS4, VS5 the natural restrictions associated to Li 4 and Lis!’
respectively.

If A = V(L) is a natural verification logic, I' C L and ¢ € L, we write
I' Fx ¢ if ¢ belongs to the smallest set containing all axioms of A, all formulae
of I', and closed under modus ponens. When I' = &, we write ) ¢. We say '

is consistent (over A\) if T' /5 ¢ A = for any formula .

Observe that L. is not a proper extension of the other two languages since
it does not include formulae of the forms t:p — ¢ or ¢ — jpl:ip. However,
there is good reason for defining it in this way:

Lemma 2.4 For any axiom ¢ of VS5 of the forms (ii)—(v), there exists an
Lis!—term s such that Fyss s:p.

Proof. If ¢ = t:¢p — 1) is an instance of (ii), set
s=i = ol gt + ity = ! - tapl

From the assumption that t:1), it is easy to derive j©p — ¢! - jtl:p, while from
the assumption that —t:?), one obtains j—t:p — ¢! - j~t:hlip; in either case,
we obtain s:p, and this reasoning may be performed within VS5 using the
tautology t:¢) V —t:).

If ¢ = ¢ — ¥l is an instance of (v), then there are three cases to
consider; if ¢ is a tautology, set s = j (j¥!l:p — ) ! - (jl) L If ¢ = t:0, we
set s = (jt:01:4:0 — @) ! - j(jt:01:t:0)! + |—t:0 — ! - {—t:0!. Finally, if ¢p = —t:0,
set s = | (j-t:0h:=t:0 — o) - (j-t:00:—8:0)! + jt:0 — ! - jt:0!.

In all cases, similar reasoning shows that s:p is derivable in VS5. The
axioms (iii) and (iv) may be treated similarly and are left to the reader. O

Henceforth we will write jp! = s for the term s given by Lemma 2.4; we will

use this notation in the following proof. Observe that verification logics are
only a minor variation of justification logics, and as such we may expect them
to share many of their basic properties, such as the following familiar ‘lifting
lemma’. Below, if t = (¢;);<n is a tuple of terms and I" = (v;);<, a tuple of
formulas, then ¢:I" denotes the tuple (£;:v;)i<n.
Lemma 2.5 Let A € {VT,VS4,VS5} and I, A, E be tuples of formulae such
that T = A = @ if A\ = VT and A = @ if A\ = VS4. Let t, s be tuples of
terms and x of variables with the same length as T', A, =, respectively. Then,
if .1, —8:A 2 byss @, there is a term u(x,y, z) such that

T, —s:A, x:E Fyss u(x, t, 8):p.
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Proof. We proceed by induction on the derivation of ¢. There are several base
cases.

If ¢ is an axiom, we set u = jp!, where in the case of A = VS5 this j¢!
is given by Lemma 2.4. If ¢ € ¢:I' (so that A # VT) or ¢ € —s:A (so that
A =VS5), set u = jp!. Similarly, if ¢ € =, say ¢ = &;, set u = x;.

Otherwise, we obtain ¢ by modus ponens, say from formulae ¢ and ¢ — ¢.
By the induction hypothesis, there are terms v, w such that ¢:I", 7s: A, x:= Fyss
v(z,t,8)1p and ¢:T,—s:A, x:E byss w(z,t,8):(¢¥ = ¢), and we may set u =
w - 0. a

As an immediate consequence, we obtain the internalization theorem for
these three verification logics, which is an explicit version of the necessitation
rule:

Corollary 2.6 Let A\ € {VT,VS4,VS5} and suppose that by @. Then, there is
a A\-term t such that Fy t:p.

3 Theories of arithmetic

In this section we review some basic notions of first-order arithmetic and settle
some notation and terminology. The material presented here is treated in
detail, for example, in [8].

3.1 Conventions of syntax

We will consider arithmetical theories in languages extending that of first-order
arithmetic with exponential, which includes the symbols 0,1, x +y, x -y, 2* and
=, representing the standard constants, operations and relations on the natural
numbers, along with the Booleans =, — and the quantifiers V, 3; the language
generated by these symbols will be denoted Lps. We assume that Lpa has a
countably infinite set of first-order variables x,y, z,.... We may define x < y
by 3z(y =+ z) and < y by z + 1 <y. We define inductively 2§ = 2% and
27, = 2%,

As is customary, we use Ag to denote the set of all formulae where all
quantifiers are bounded, that is, of the form Vx < t ¢ or 3z < t ¢. We will
use pseudo-terms to simplify notation, where an expression ¢(t(x)) should be
understood as a shorthand for 3y < s(x) (¥(z,y) Ap(y)), with ¢ a Ag formula
defining the graph of the intended interpretation of ¢t and s a standard term
bounding the values of t(x). The domain of the functions defined by these
pseudo-terms may be a proper subset of N. Functions definable by pseudo-
terms of this form are elementary.

We assume that every finite sequence (s1, ..., s,) may be represented by a
natural number s, with the following properties:

(i) thereis a Ag formula seq(x) such that seq(s) is true if and only if s codes
a sequence;

(ii) there is a pseudo-term |z| such that |s| returns the length of s, and we
assume that |s| < s for all sequences s;
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(iii) there is a pseudo-term (x), such that (s); returns the i'" element of s,
also with the assumption that (s); < s, and

(iv) there is a term B(x,y) such that whenever s is a sequence of length at
most N and with each s; bounded by M, it follows that s < B(N, M).

Finite sets may also be represented using sequences (by ordering them arbitrar-
ily), in which case we say that = belongs to s if = (s); for some 4. Similarly,
we can represent some functions using sequences. Call a function small if its
domain is finite. Small functions can be coded by pairs f = (d,r), where d,
r are sequences of the same length, and we write f(z) = y if there is some ¢
such that (d); = « and (r); = y. We call d the domain of f and denote it by
dom(f).

3.2 Peano Arithmetic

For the sake of concreteness, we will be working in Peano arithmetic. PA is
formed by adding the axiom schema of successor induction (equation (2) below
for any formula ¢ of Lpa) to Robinson Arithmetic, e.g., as axiomatized by:

(i) Vz (x =) (viii) VaVy (z+ (y+1) = (z+y)+1)
(il) VaVy (z £y V aV ~alz/y]) (ix) Vz (x x 0 =0)

(iii) VaVy (z #yVy =) (x) VaVvy (3:X (y+1) = (zxy)+y)
(iv) VaVyVz (z £yVy # 2V = 2) ( i) 20 =

(v) Vo (0 #x +1) (xii) Va (2“1 =27 +27)

(Vi) Vz (z=0VIyax=y+1) (xiil) VaVy (z+1#y+1Va=y)
(vii) Vo (x4+0=12x)

(in (ii) above, « is any atomic formula). The axiom schema of successor induc-
tion is given by

©(0) AVz (gp(x) — oz + 1)) — Yz o(z). (2)

We remark, however, that our proof is fairly general and would readily
work for many theories stronger (or weaker) than PA, or even theories in other
languages, such as that of set theory.

3.3 Gobdel numberings

Fix some Godel numbering ©-7: Lpy U Ligy — N\ {0}, such that the set of
codes from each language is elementary. Note that 0 is not the Gédel number
of any expression. For a natural number n, define a term 7 recursively by
0=0and n+1= (i) +1. As in the case of sequences, we will assume that
if N, M are such that the expression € has at most IV symbols, each with code
bounded by M, then Te7 < B(N, M); that if n is a proper subexpression of e,
then ™7 < Te7; and that if € has n symbols, then n < Te7.3

3 These conditions are achieved, for example, if € is coded by putting all of its symbols in a
sequence and using our previous assumptions on the coding of sequences.
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If I' = (€)i<n is a sequence of expressions, we define "I'7 to be the code
of the sequence (7¢;7);<,. We will sometimes abuse notation by identifying
expressions with their Gédel numbers and sets or sequences with their codes.

4 Arithmetical interpretations

In this section we will define the arithmetical interpretation of verification logic.
It requires the notion of a normal proof system:

Definition 4.1 A normal proof system is a triple (m, m,a) such that:

(i) m =m(x,y) is a A formula of Lpa and, for every ¢ € Lpa, PAF ¢ if and
only if 3z 7(x, ") holds.
(ii) Say that y is a m-conclusion of x if w(x,y) holds. Then, the set [z],

of all m-conclusions of  is finite for all « and the function x — [z] _ is
computable.

(iii) m is a computable function such that, for all n,k and formulae @, 1, if
m(n,"p = ¢7) and 7(k,"¢7), then m(m(n, k), 7).

(iv) a is a computable function such that, for all n,k and any formula ¢, if
m(n,"7) or w(k, "), then 7(a(n, k), 7).

We assume that a canonical normal proof system (Proof, mpa, apa) is given,
and [z] = [#]p,.;- The existence of normal proof systems is well known; for
example, we may use a multi-conclusion variant of Gédel’s proof predicate. Ob-
serve that it is not necessary to work with Ag proof predicates (A is sufficient),
but we follow [7] and work within bounded arithmetic when possible.

Definition 4.2 A potential arithmetical interpretation is a tuple & =
(f, ™, m,a,v) such that f maps propositional variables to formulas of Lps and
term variables to natural numbers, (m, m,a) is a normal proof system, and
v: Lpa — N is a computable function. We define a function -©: Lis! — Lpa
by letting

(i) v® = f(v) for any variable v, (iv) (t-5)° = m(t%,s%),
(i) -® commute with Booleans, (v) (t+5)° = a(t%,5%), and
(i) (t:p)® = 7(tS,7®7), (vi) 0!° = v(p®)

We say that S is an arithmetical interpretation of VS5 if whenever ¢ € Lis!’

then ¢©® — 7(v(¢®),7»®7) holds. The arithmetical interpretation & is robust
if, whenever ¢ € Ag, then © — 7(v(p®), ¢ 7) also holds.

We remark that robustness is not necessary for our proofs to go through,
but it is a desirable property since such interpretations automatically satisfy all
expressions ¢ — j¢l:p whenever ¢ € Ay, thus internalizing the completeness
of Peano arithmetic for A formulas [8].

Proposition 4.3 (Arithmetical soundness) If VS5 I- ¢, then PA F ©® for
any arithmetical interpretation &.
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Proof. By a straightforward induction. Clearly, modus ponens preserves va-
lidity. We check the axiom t:p — ¢, which translates as 7("tS7, 7S 7) — S,
Either 7(Tt%7,7p%7) is true, whence PA F ¢ (by the soundness of a nor-
mal proof predicate, i.e., condition (i)) and so PA - 7("t®7,7¢®7) — % or
7(TtS7, 7S 7) is false, whence it is refutable in PA (as it is Ag), whereby again
PA F 7(TtS7 7S 7) — . The rest of the axioms are proved similarly. a

Our main objective is now to prove that VS5 is also complete. We will in
fact prove a slightly strengthened version of completeness:

Theorem 4.4 (Arithmetical completeness) If ¢ is consistent with VS5,
then there is a robust arithmetical interpretation G* such that PA - ¢ .

We defer the proof of this result to Section 6. Its general structure is similar
to that of the arithmetical completeness proof in [1], although some additional
care must be taken to deal with the ‘negative information’ conveyed by proof
terms of the form j—t:p!. Among the technical difficulties is that many of
the steps must be done constructively, including a version of the Lindenbaum
lemma.

5 A constructive Lindenbaum’s lemma

As in many familiar completeness proofs, the first step is to expand the consis-
tent set {¢} to a larger set that can be dealt with more easily. We do this by
first expanding the set “downwards” and then “upwards.” It will be convenient
to introduce the notation ~ ¢ defined by ~ ¢ = - if ¢ does not begin with a
negation, and ~ ¢ = 1 if ¢ = .
Definition 5.1 A set of formulae I' is saturated if:

(i) whenever 9 occurs in T, either ¢ € T or ~¢ € T,

(ii) whenever —(s +t):p € T, then —s:p € T and —t:¢ € ', and
(iii) whenever —(s-t):p € T" and ¥ — ¢ occurs in T', then either —s:(¢p — ¢) €

I, or —t:p €T

Lemma 5.2 For any consistent formula ¢ there exists a finite, consistent,
saturated set that contains .

Proof. Choose a subformula of ¢ and either add it or its negation so as to
maintain consistency, as well as the required formulae for —(s - ¢):p and —(s +
t):¢. Rinse and repeat. Note that either the formulae or the terms that we add
are simpler than those previously appearing and thus the process terminates.0

As an immediate consequence of the definition, we note that saturated sets
of formulae have some basic closure properties.

Lemma 5.3 Suppose I is a saturated set of formulae.

(i) v — ¢ €T implies that ~¢ € T or ¢ € T and =(v» — ) € T implies that
Y,~pel;
(ii) —jplip € T implies that 7@ € T for ¢ of the form t:ip or —tp, and
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(iii) t:p € ' implies ¢ € T.

These properties are easily verified and left to the reader. Once we have
included a formula ¢ in a saturated, consistent set I', the next step would be
to use a suitable variant of Lindenbaum’s lemma to extend I' to a maximal-
consistent set of formulae. This amounts to selecting which instances of t:p
must be true, as propositional variables not appearing in I' may all be assigned
the value ‘false.” In fact, instances of t:¢ may also be assumed false, unless
they are forced to be true by axiom (v) or are sufficiently witnessed by I". We
make this notion precise below. Recall that an expression € occurs in T if it is
a subexpression of a formula in T'.

Definition 5.4 Let I" be a set of formulae A verification instance of Li5! (or
simply: a verification) is any formula of the form t:p € Lis!' We say that t:¢p

is T-balanced (or simply ’balanced’) if ¢ occurs in either ¢ or I'. The set of
I-balanced verifications will be denoted by [I].

Remark. If I' C Li5! is a (code for a) finite set of formulae and ¢:p € T', then
t:p € [I']. Moreover, jplip € L]s! is always I'-balanced, regardless of T" or .
Observe that if t:¢ is [-balanced then "¢ < max(T¢7,T'7) by our convention
on Godel numbering.

For balanced verifications, the truth value of t: will be decided recursively,
according to an order determined by the Godel number of each formula:

Definition 5.5 Fix a (code for a) set of formulae I". If t:¢, s:1) are verifications,
we write t:p < s:p whenever (Tt7,7p7) <iex (T87,797); Le., either Tt7 < g7
ort=sand Tp? <7 For any 7 € [['], we define |7 ={o € [I']: 0 < 7}.

In words, | 7 is the set of balanced predecessors of 7. It will be convenient
to give a simple bound on the size of this set:

Lemma 5.6 LetT' be saturated and t:p € [I']. Then, | L(t:p)] < 7t7-(Tt7+7T7).

Proof. This follows from a straightforward counting argument: if s:tp € [(¢:¢),
there are at most Tt7 choices for s, and Ts7+ T['7 < F¢7 + 7T choices for v,
since s:1) must be balanced and, by our conventions, any subexpression e of
any formula in T" must satisfy Te7 < TT'7. The inequality is strict because t:¢
is excluded. a

An immediate consequence of Lemma 5.6 is that < [ ['] is a well-order of
order type w.

Definition 5.7 Let I' be any set of Lis!—formulac‘ We define a set T' C [['] by
recursion on < as follows.
Fix 7 € [I'] and assume, inductively, that I'N |7 has been defined. Then,
r el if and only if one of the following holds:
(i) T €T,
(ii) 7 = jplp and ¢ is a tautology;
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(iii) 7 = (s-t):p, and there is a formula ¢ such that both s:(¢» — ¢) and ¢:9
belong to I'N | 7

(iv) 7 = (t + s):¢ and either t:¢ or s:¢p belongs to LNl
(v) T =jt:pl(t:p) and t:p € r'nir,or
(vi) 7 = j~t:pl:(—t:p) and t:p T N | 7.

Although we have only closed T under restricted versions of the clauses for
the term operations, I' is actualy closed under the unrestricted versions, as we
show in the following lemma.

Lemma 5.8 Given finite I’ C Li5! and arbitrary terms t,s and arbitrary for-
mulae @, 1),
(i) if ¢ is a tautology then jpl:p € f;
(i) if both s:(¥ — @) and t:p belong to T then (s - t):p € T';
(iii) 4f either t:p or s:p belongs to T then (s+t)pe I;
(iv) if t:p € T then it:oli(tp) € I;
(v) if t:p €T then j—t:pl:i=(t:p) € T.
Proof. (i) As observed above, jpl:p is always balanced. If ¢ is a tautology, it
follows that jpl:p € [I'] and thus jpl:p € ' by definition.

(ii) If both s:(p — ) and t:p belong to I' then by definition, s:(¢p —
¢),t:p € [I']. Moreover, Ts7,7t7 < Ts -7, whence s:(p — @), t:9) < (s - ).
Meanwhile, ¢ occurs in 1 — ¢, which occurs in s, which occurs in s - ¢, hence
(s - t):p is balanced. It follows by definition that (s -¢):p € I.

(iii) If s:p € I', then it is balanced. Reasoning as above, (s + t):¢ is also
balanced and s:¢ <1 (s+t):p. It follows that (s+¢):p € T'; the case for t:p € T
is symmetric.

(iv) As before, jt:pl:it:p is balanced regardless of t,p, and since Tt7 <
Tt:p7 < Tit:p!7, we have that t:p < jt:plit:p. Moreover, if t:p € T', then
it must be balanced, so t:p € | (jt:¢!:t:p), which by definition implies that

it:plit:p € I. B _
(v) Assume that t:p € T'. Then, t:p & TN} (j~t:pl:mt:p), and we know that
i—t:pli—t:p € [[], so by definition j—t:pl:—t:p € T, as desired. ad

Of course, T is not actually a maximal-consistent set, but the set of its
consequences is.

Definition 5.9 Let I be a saturated, consistent set of Lis!—formulae. We define
I |~ ¢ by induction on ¢ as follows:

(i) For any propositional variable p, " |~ p if and only if p € T
(i) If t:p is a verification, then T |~ t:¢ if and only if t:p € T
(iii) T j~ —p if and only if T' [£ ¢, and
(iv) T o ¢ — p if and only if either T £ ¢ or T |~ .
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The following lemma shows that [ is not that far away from T'.

Lemma 5.10 Let T' be a consistent set of formulae.
(i) Ift:p €T and t occurs in T, then ¢ also occurs in T, and

(ii) of ~t:p €T then t:p & r.

Lemma 5.10 is proved by induction. We omit the details.

Lemma 5.11 Let T’ be any finite, consistent, saturated set of formulae.
(i) If ¢ is a tautology, then T |~ .

(i) If o €T then T p .

(iii) Whenever t:p € T, it follows that T K oe.

Proof. We only sketch the proof. For the first item: proceed by a simple
induction using clauses (iii) and (iv) of the definition, treating expressions of
the form t¢:p as separate propositional variables. The second item follows by
an easy induction on the length of ¢ using the fact that I' is consistent and
saturated.

For the last item: if t:p € T', then ¢ € T’ by Lemma 5.3(iii), and thus by
the previous item, I" v ¢. Hence we may assume that t:p ¢ I'. The result then
follows by induction on t. a

Our goal in the remainder of this section is to prove the next lemma. It will
be crucial for defining the arithmetical interpretations needed for the proof of
Theorem 4.4, and implies that membership in I' is elementary.

Lemma 5.12 There is a A formula Compr-(z) such that, for all verifications
7, 7 € I if and only if Comp("77) holds.

Towards a proof of Lemma 5.12, we define some auxiliary notions.

Definition 5.13 Given any finite set I' C L]s!ﬂ

(00, .. .,0p) of D-balanced verifications is an initial <1-segment if, for all verifi-
cations 7 and all j < n, 7 € Lo if and only if 7 = o; for some ¢ < j. We say
that (09,...,0n) contains 7 if T = o; for some i < n.

A sequence (zg,...,2,) codes an initial <1-segment if there is an initial
<-segment (og,...,0,) such that x; = To;7 for all i < n.

we say that a sequence

An initial <-segment is simply an initial segment of the well-ordering < |
[['], so that it is uniquely determined by its last element.

Lemma 5.14 There is an elementary function K (z) such that if T € [T'], then
there is some y < K(717) coding an initial <-segment containing 7.

Proof. For each = that does not code some 7 € [I'], we set K(z) = 0. If
does code such a 7, we will give a value for K (z) such that for some y < K(x),
y codes the initial <-segment whose last element is 7.

By definition, if t:p < s:¢p, then either "7 < Fs7or t = s and Tp? <
7. By the remark following Definition 5.4, if 7 = s:¢) is I'-balanced then
)7 < max(Ts7, 7). By our conventions on the Godel numbering, Tt:p7 is
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elementarily bounded in Tt + 7, for any verification t:¢. Hence, the Godel
numbers of 7 and all of its < [ [[']-predecessors are bounded by some M that
is elementary in "s7+ "I, It is also clear that the cardinality of the set of
< | [[]-predecessors of 7 is bounded by M, so that we may set, for example,
K(tr) =B (M,M). |

Below, recall that a function on the natural numbers is small if its domain

is finite.

Definition 5.15 Fix a finite set I' of LiS!—formulae. We say that a small

function e is an initial evaluation if dom(e) is an initial <-segment, e takes
values in {0, 1}, and for all 7 € dom(e) we have that e(7) = 1 if and only if one
of the following occurs:

(i) TeT,

7 = jplip and ¢ is a tautology;

T=(s-1):p, and e(s:(¢p = ¢)) = e(t:)) = 1;

7= (t + s):p and either e(t:p) =1 or e(s:p) = 1;

(iii

(iv

—_ — T

7 = jt:pl:(t:p) and e(t:p) =1, or
(vi) 7 =i~t:l:i(—t:p) and e(t:p) # 1 (i.e., it is 0 or undefined).
Given any verification 7, define E(7) = 1 if and only if there exists an initial

evaluation e which assigns 1 to 7, and set E(7) = 0 otherwise.

Observe that if 7 is not I-balanced, then E(7) = 0. Otherwise, the value
of E(7) may be computed in any of several equivalent ways:

(v

Lemma 5.16 Let 7 € [['], b € {0,1}. Then, there is an elementary function
C(x) such that the following are equivalent:
(i) E(r) =0,

) e(T) = b for every initial evaluation e,
(iii) e(7) = b for some initial evaluation e,

) e(t) = b for some initial evaluation e = (d,r) such that ~d7,7r71 <
o).
Proof. The lemma is proven by checking that if e, ¢’ are two initial evaluations,
then e(7) = ¢/(7) whenever the two are defined; this is straightforward and we
omit the details. Thus to evaluate E(7), it suffices to consider any such initial

evaluation. The function C' bounding the smallest witness can be constructed
using the funcion K from Lemma 5.14 and the function B from Section 3.1.0

The function E(-) is useful because it gives us an elementary method to
determine whether 7 € I

Lemma 5.17 For any finite set of formulas I' C L and any verification T,
E(t)=11if and only if T € T.

Proof. If 7 is not I'-balanced, then it is not included in any initial <-segment,
so E(7) = 0; on the other hand, 7 € T, so the equivalence holds trivially.
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Otherwise, we proceed by induction on 7 along < [ [I']. In view of Lemma
5.16, it suffices to consider an arbitrary initial evaluation e such that e(7) is
defined, and prove that e(7) = 1 if and only if 7 € I. If 7 € T, then e(r) = 1
and T € f, so we may assume otherwise. We must then consider several cases
depending on 7; we work out only a few as examples.

If, for example, 7 = (s - t):p and e(7) = 1, then e(s:(¢ = ¢)) = e(t)) =1
for some ), which by the induction hypothesis means that s:(¢p — @), t:) € f,
so that by Lemma 5.8, 7 € T. Conversely, if 7 € T, then by definition s:(¢p —
)t € rn J 7 for some 1. But since the domain of e is an initial <-segment
and e(7) is defined, we must also have that s:(¢» — ¢),t:¢) € dom(e) and thus
by the induction hypothesis, e(s:(¢ — ¢)) = e(t:tp) = 1, which means that
e(r) =1.

Next, we consider the case when 7 is of the form j—t:pl:=t:p. If £ is not
I-balanced, then e(t:¢) is undefined, whence e(7) = 1; similarly, t:p € T, so
rel. If, instead, t:¢ is I-balanced, then again we have that t:¢ € dom(e) and
thus e(r) =1 < e(t:p) =08 tp ¢ T & 7 €.

Each of the remaining cases is similar to one of the above and is left to the
reader. m]

Proof of Lemma 5.12. Let C(-) be the bound given by Lemma 5.16. We
use C(-) to define Comp(z) by a natural translation into Lpa of:

x codes a verification T and there is a number y < C(x) such that y codes
an initial evaluation e with e(1) = 1.

The only thing that needs to be verified is that the property ‘y codes an
initial evaluation’ is Ag. This is straightforward from Definitions 5.13 and
5.15 and our conventions on coding of sequences, as all quantifiers involved
are bounded by x and "I a

6 Fixed-point proof predicates

The construction of I' allows us to constructively extend any saturated, con-
sistent set I' to a maximal-consistent set of formulas {¢ € L : I" | ¢}. Next,
we construct an arithmetical interpretation for L tailored specifically for this
extended set. This construction relies on a fixed-point argument that we detail
in this subsection, very similar to that of [1]. For this completeness proof, it is
sufficient to consider simple propositional assignments, in the following sense:

Definition 6.1 A propositional assignment f is simple if f is elementary and,
for every variable p, either f(p) = (Tp7="p7) or f(p) = (Tp7=0).
Moreover, the arithmetical interpretations resulting from the proof will co-

incide with the function f given below, for a particular choice of 7:

Definition 6.2 Given a formula 7 = 7(z,y) and a propositional assignment
f, we extend f to an auxiliary function f: L]s! — Lpa by letting
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e fz(p) = f(p) for any propositional variable p,
e f,. commute with Booleans, and
o faltip) = 7(TE0, 7 fx(0) 7).
Lemma 6.3 If f is a simple propositional assignment and 7(x,y) is Ag, then

fr(p) is Ag for all ¢ € L[s!' Moreover, if m contains quantifiers and each of x
and y appears free in 7w at least once, then fr is injective.

Proof. We prove by induction on "o 74+1)7 that if f(¢) = f=(¢), then ¢ = 9.
If ¢ = p is a propositional variable, then f.(¢) does not contain quantifiers
or Booleans, and hence neither does fr(v). It follows that ¢ must also be a
propositional variable, which by the injectivity of the Gédel numbering yields
1 = p as well.

Next, consider the case where neither ¢ nor v is of the form ¢:6. If ¢ =
wo — 1, then we must also have that 1 is of the form 1y — 11, since otherwise
the outermost connective of fr(¢) could not be an implication. Then, by the
induction hypothesis, o9 = 99 and @1 = 1, so ¢ = . The case where
(© = g is analogous.

Finally, suppose that one of ¢, is of the form ¢:0 (say, ). Then, since
fx() =7(TE7,7 f(0)7) contains quantifiers (by our assumption on ), so does
fx (), which implies that ¢ contains some occurrence of a subformula ¢’ =
siy. But then, if we let #£ denote the total number of logical symbols in
¢ (Booleans and quantifiers), we see that #/f.(p) = #f= (V) > #f- (') =
#f= (), where the last equality holds because both formulas are instances of
m. Thus #f-(¢) = #f=(¢'), which imples that ¢ = ¢'. It follows by the
injectivity of the Gédel numbering that ¢t = s and f(8) = fx(v), and by the
induction hypothesis that v = 6, so that ¢ = 1, as needed. a

Note that if 7 does not contain quantifiers then f, may fail to be injective,
but proof predicates may always be assumed to contain quantifiers (if they
don’t, dummy quantifiers can always be introduced).

Lemma 6.4 Given a simple propositional assignment f, there are elementary
functions f+: N2 — N and f~: N> — N such that, whenever = = 7(x,y) is
a predicate that contains quantifiers and has both variables free, and ¢ € Li5!7
then

. f+(rs0‘| , I—ﬂ—‘l) = '—fw(@)_‘y

o [T(Tfx(p),Tm) =TT, and

e (7,7 x7) =0 for any ¢ € Lpa not lying in the range of fx.
Proof. By our assumptions on Gédel numbers, we have that, if n is the number
of symbols in ¢ € L]s! and the greatest G6del numbers of a symbol appearing in

@ is m, then n, m < F¢7. Meanwhile, for any number k, the length of k is 2k+1,
so the number of symbols in fr(¢) is bounded by (2(27p 7+ 1) +3)FpT -,
Similarly, "v7 < T if v is any variable appearing in 7. If we let ¢ be a bound
for the Godel codes of all constants and logical symbols of Lps, we thus see
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that every symbol in f,(p) is bounded by "7+ c. It follows that
Tfr(@)T < B'(T1,mm) = B((2(27¢7 + 1) +3) T T, T 4 c),

whenever ¢ € L) and m(z,y) € Lpa. Moreover, fr(p) can be defined recur-

sively on the complexity of o, and thus we may set z = f+(z,y) if 2 < B'(z,y)
and there are @, m such that z = T, y = Tr7 and z = Tf;(p)7, and
ft(z,y) = 0 if there is no such 2. The function f* thus defined is clearly
elementary.

To define f~, note that "¢ can also be bounded elementarily by some
elementary function B” (" fz(¢)7, 7 7) (the actual function may be computed
analogously to B’ and is inessential). Thus we may set f~(z,y) = z if z =

/1 (z,z) with z < B”(z,y), and otherwise, set f~(z,y) = 0. O

Now that we have studied simple propositional assignments in general, let
us relate them to our previous results on saturated sets of formulae. Given a
saturated set I', we will define a propositional assignment designed to ‘agree’
with T

Definition 6.5 Fix a set of formulae I' C Li5!' Define a propositional assign-

ment f given by fI(p) = (p7 =rp") if p € T, and f(p) = (Tp7 = 0) if
not.

Clearly, if T is finite, then f* is simple. Next, we tailor our proof predicates
so that they, too, match well with T' (and fT):

Definition 6.6 Given a formula 7 and a finite set of formulae I' C L]5!7 define
a new formula
NewProof ,(z,y) =Proof(x,y) (3)

V3t3p (z =17 A Compr(TtpT) Ay = (f1)F (T, ).

Lemma 6.7 If T is any finite set of Li5! formulae, there is a Ag formula 7
containing at least one quantifier, with free variables {z,y}, and such that

PA F Vavy (ﬂ'F (x,y) <> NewProof ,r(x, y)) (4)

Proof. Apply the usual fixed-point theorem. a

The reason why we want the formula 77 in Lemma 6.7 to contain at least
one quantifier is so that it satisfy the hypotheses of Lemma 6.3. Lemma 6.8
below shows that the valuations given by Lemma 6.10 behave just like we would
like them to.

Lemma 6.8 If I" is a finite, consistent, saturated set of Li5!-formulae, then
for every formula ¢, T |~ ¢ if and only if PA + f};r (p).

Proof. In view of Lemma 6.3, fI.(¢) is always Ag, so PA F fL.(p) is equiv-
alent to fI;.(¢). Thus we will only prove that I' |~ ¢ is equivalent to fI;(¢).
We proceed by induction on the complexity of ¢, considering several cases.
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If ¢ = p for some propositional variable p, then PA + f};r (¢) exactly when
f};p (¢) = ™p7 = Tp7, which is the case if and only if p € T". But this is
equivalent, by definition, to I' |~ ¢.

If ¢ =1 — 0, we have that fI.(¢) = fI(¢) — fi(6). By definition,
I |~ ¢ if and only if either T" |~ ¢ or T |~ 6. But this is equivalent, by
induction hypothesis, to having that either ~fL. (1)) or f5.(6) holds, i.e., that
fE () = fL(0) holds. The case where ¢ = = for some formula ¢ is similar.

Finally, consider ¢ = t:1). Suppose that " |~ ¢, so that t:¢) € r by definition.
This is equivalent, by Lemma 5.12, to Comp("t:¢)7) holding, which by (3) yields
NewProof,r(7t7,747), as well as " (7¢7,7 fL.(1)7) by (4). But the latter is
just ffp (p), and since this is a Ag formula it follows that PA + f}:r(ap), as
needed. B

Conversely, suppose that I' [ ¢, so that t:ip ¢ T, ie., Compp(Tt:)7)
is false. Since by assumption, Proof(Tt7,k) is false for all k, it fol-
lows that NewProof r("¢7,7¢7) is false and hence so is 7''(7¢7,7 fL.(4)7),
e, —mt(7t7, 7 fL(4)7) is true. But this formula is Ag, whence PA
ﬁwr('—t—' - 71;F (¥)) = f,l;F (¢)-

Since we have considered all cases, the lemma follows. O

The following lemma shows that the predicate 7' is extensionally correct.

Lemma 6.9 Let D' be any finite, consistent, and saturated set of Li5!-formulae.
Then, for any ¢ € Lpa, PA & ¢ if and only if 3x 7% (2,7 p7) holds.

Proof. One direction is obvious from (3), since Proof(k, ¢7) implies that
NewProof,.r(k,"¢7), and thus that 7' (k, "¢).
For the other, we note that if 7! (k, 1) holds, either we already have that

Proof(k, 1), or else k = 't for some term ¢ and ¢ = fL.(6) for some 6 € Lis!
such that t:0 € f, which by definition means that T |~ ¢:0. By Lemma 5.11,

T |~ 0, and thus PA - ¢ by Lemma 6.8. O
The following is the main technical lemma:

Lemma 6.10 Given a finite, consistent, saturated set of formulae T', there are
elementary functions m*,a* ,v* such that &* = (fF,TFF, m*,a*,v*) is a robust
arithmetical interpretation and satisfies p© = f};r (¢) for all p € Lis!‘

Theorem 4.4 readily follows from Lemma 6.10:

Proof of Theorem 4.4. By Lemma 5.2, if ¢ is consistent, then it can be
included in a finite, consistent, saturated set I'. By Lemma 6.8, if I" |~ +, then
PA  fL (v); in particular, PA F ff (). By Lemma 6.10, there is a robust
arithmetical interpretation &* which satisfies ¢ = fE () for all 4 € Li5!'
It follows that PA F »®", as needed. O
Hence, it remains to prove Lemma 6.10. The proof uses the following fact:

Lemma 6.11 If ¢ is Ay, then there is an elementary function b(-) such that
then PA F o(z) Ao < u— Jz < b(u) mp(z, Tp(x)7).
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Proof. If ¢ is Ay, then PA proves that for all z € N such that ¢(z) holds, there
is some z < 2}* with Proof(z,"¢(z)7), where [ is some constant that depends
only on ¢ (see, for example, [8]). But then, once we have Proof(z, p(z)7), we
also have m¢(z, "p(x)7) using Lemma 6.7 and the definition of NewProof, so we
may take b(u) = 2} O

Proof of Lemma 6.10. Let apy and mpa be the computable functions in-
troduced immediately after Definition 4.1, and pz.p(z) denote the least x
satisfying ¢, if it exists. We define a*(n,k) = "t + s7 if both n = ¢ and

= 57 for some proof terms s and ¢. If neither n nor k& code proof terms,
set a*(n,k) = apa(n,k). Otherwise if, say, only n codes a proof term, de-
fine a*(n, k) = apa(y, k), where y = paz¥y € [n], r Proof(z, fl.(p)7). As
we show, the existence of such a y follows from the fact that by Lemma
6.9, PA - fL(¢) for each ¢ € [n].r. Indeed, this implies that for each
@i € [n],.r =t {p0,...,n}, we can find some z; such that Proof (z;," fL.(¢;)7).
Define 2y = 29 and ;41 = apa (i, zi+1). Hence, x = x,, witnesses that y above
is well-defined. If only k codes a proof term, define a*(n, k) symmetrically.

Analogously, set m*(n,k) = t-s7if both n = t7, and k = s7 for some
proof terms s, t; m*(n,k) = mpa(n, k) if n and k do not code proof terms;
m*(n,k) = mpa(y, k) if only n codes a proof term, where y = pz.Vo €
[n] .- Proof(z," fir(p)7). The existence of such a y is proved as before. The
remaining case is defined symmetrically.

We want to show that a* and m* are computable. From Lemma 5.12 and
Lemma 6.7 follows that ' is computable. By assumption, the set of codes
of proof terms is elementary. Thus, it suffices to show that = — [z r is
computable.

Claim 1 For all x, [x] . r is finite, and the function x — [x]_r is computable.

Proof. By Lemma 6.7, y € [z]_r if and only if either Proof(z,y) or = and
y respectively code expressions ¢ and f}:p (¢) such that t:p € r. By our con-
ventions on Godel numbering, at most one of these alternatives occurs, and
which one does—if any—is determined by whether x codes a proof term. If it
does not, then the desired result is immediate, as [-]p . is finite-valued and
computable by assumption. Otherwise, x = rt7 for some proof term ¢ and
7' (2,y) holds. Then y codes some formula fI.(¢) with ¢ € T'. Recovering
o from y is elementary by Lemma 6.4, and so too is deciding whether ¢ € f,
by Lemma 5.12. The expression t:p is I'-balanced, whence ¢ either occurs in
t or in I'. Hence, the G6del number of any 7'-conclusion of x is bounded by
x4+ T, and we can computably enumerate all of them. o

Claim 2 (77, m* a*) is a normal proof system.

Proof. Note that the formula 7! is Ay by Lemma 6.7, and each € N has
only finitely-many 7" -conclusions by Claim 1. Moreover, a* and m* satisfy the
required conditions—we prove this for m*. Clearly, whenever k£ and n do not
code proof terms, then 7' (m*(n, k), 7) is true if so too are 7% (n, ¢ — ¥7)
and 7' (k,"¢7), as 7! is essentially the predicate Proof in this case. Meanwhile,
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m*(n, k) = mpa(n, k) in this case, which is computable by assumption.

If only k codes a proof term s and ¢ = f1.(6) for some 6 € L]5!7 then by (3),
7t (n, "o — ) and 7! (k, ") yield Proof(n, "¢ — ¥7) and Compp(Ts:07). In
this case, m*(n, k) is defined as mpa(n,y), where y is least such that V¢ €
[k].r Proof(y," fir(¢)7). Moreover, y can be computed from k, since [-] .r
and Proof are computable, and hence so is mpa (n, k). The case where only n
codes a proof term is symmetric, and if n and k respectively code proof terms ¢
and s, so that, say, ¢ = f5.() and ¥ = f5.(x), then we obtain Comp("s:67),
as well as Comp(Tt:0 — x7), which together imply Comp (7t - s:x7) and thus
al'(m*(n, k), 7). Clearly, the map t,s + 't - 57 is computable.

A similar argument shows that a* also has the required properties, and thus
(¥, m*,a*) is a normal proof system, as claimed. |

To define v*, we need an auxiliary function. Let b;(z) be an elementary
function such that whenever x codes a tautology, then Proof(k, z) holds for
some k < by(x); such a function can easily be computed for any reasonable
proof system and is typically exponential. Whenever = codes a Aj formula
¢, define b, (-) to be the function obtained by applying Lemma 6.11 to ¢, so
that ¢(k) and k < w imply 7'(2,7¢(k)7) for some z < b, (u). Set vpa(z) =
wy < by(x) + by(z). 77 (y, ) if such a y exists, and vpa(x) = 0 otherwise. The
function b, is computable, whence so too is vpa.

If 78 (k, ) holds, then, as it is a true Ag sentence and k < "7l (k, )7, it
follows that vpa ("7% (k, ¢)7) is nonzero (here, we take ¢(-) = 77 (-, ¢)). Hence,

WF(k’ 90) - 71—F(VPA(FTFF(]@ 90)—‘)» er(k’ 90)—')

is valid. More generally, for any Ap-formula ¢— in particular, for ¢ =
—nl'(-, ¢)— we have

¢ — 7' (vpa(T97), T7). ()

We also have ¢ — 7''(vpa(T¢7), ), whenever ¢ is a tautology. Given this,
define v*(z) = Tjp!Tif z = T fL. ()7 for some ¢ in the domain of j-!, and v*(z) =
vpa (z) if no such ¢ exists. We may now define &* = (fT', 7', m* a*,v*).
Claim 3 If t is any term of Li
906* = f};F(‘P)
Proof. We prove both claims simultaneously by induction on any expression
€ of Li5!' Consider first the case where € is a formula. We have that p® =
fS(p) = fL(p) is true for atomic p and, by definition, fI. and -©" both
commute with Booleans. For a formula t:0, we use the identity t© = rt7 to
see that fLy(t:0) = 77 (F67, 7 fLL(0)7) 2 77 (1S7,7087) = (+:0)°.

Now assume that € is a term. We must consider several cases, depending on
the form of €, and use the definitions of a*, m*, and v* to show that €™ = re™.

5!, then tS" = 7, and if ¢ is any formula,

We only consider two cases as examples. If € = jo!, ](p!G* = v (%) Z
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v (fE(¢)) = rig!T; similarly, (t-5) =m*(t%",s%") Em*(Tt71,rs7) =t 57
Considering € = t + s and € = = concludes the proof. a

Finally, note that = = © 5. (¢)7 for some ¢ in the domain of j- ! iff # codes
a formula in the range of fl., iff f~(z,77'7) > 0, and the function f~ is
elementary by Lemma 6.4. Therefore, v* is computable. It follows that &* is
an arithmetical interpretation, and by (5), it is robust.

This finishes the proof of Lemma 6.10. a

7 An afterword on realizability

Recall that S5 is the normal modal logic generated by positive and negative
introspections, and the reflection axiom T: Op — p. The purpose of introducing
VS5 is to obtain a justification logic which combines two properties:

(i) it realizes S5, and
(ii) it is sound and complete for its arithmetical interpretation.

In this article we have proven the second point and we leave the first for future
work. However, in this section we will say a few words about it.

Let us use (1) to denote the “forgetful projection,” which recursively re-
places instances of t:p by O(p)”, commutes with Booleans and fixes proposi-
tional variables. Then, the following can be easily verified by induction on the
length of a derivation:

Theorem 7.1 For ¢ € Li
S5.

51, if @ is derivable in VS5 then (@) is derivable in

A more interesting property would be the converse of this result; if we are
given ¢ in the modal language such that S5 ¢, can we find a formula ¢" in
Lisl such that (¢")" = ¢ and VS5 F ¢? Such a ¢" is a realization of ¢. Let us
see that all axioms of the respective modal logics have realizations.

Theorem 7.2 If ¢ is an aziom of S5, then there is " € L]s! such that (¢")? =
@ and VSb I .
Proof. Let z,y be arbitrary term variables.

e O(p — q) — (Op — Og) is realized by z:(p — q) — (y:p — (z - y):q);

e Op — p is realized by x:p — p;

e Op — OOp is realized by x:p — jz:pl:(z:p), and

e —Op — O-0Op is realized by —x:p — j—x:pl:(—x:p).

O

Thus we see that it is relatively straightforward to realize axioms of Sb.
One would then expect to be able to ‘cobble together’ such realizations so as to
realize more complex theorems, and while doing so is not trivial, it is possible
for JS5. We believe this to also be the case for VS5, but leave it for future work.
Thus we conclude our discussion on realizations with the following conjecture:
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Conjecture 7.3 If Sb - ¢, then there is ¢" € Lisl such that (¢")7 = ¢ and
VS5 I .
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