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Abstract

Classic epistemic logic focuses on propositional knowledge expressed by “knowing
that” operators. However, there are various types of knowledge used in natural lan-
guage, in terms of “knowing how”, “knowing whether”, “knowing what”, and so on.
In [10], Plaza proposed an intuitive know-what operator which was generalized in
[16] by introducing a condition. The latter know-what operator can express natural
conditional knowledge such as “I know what your password is, if it is 4-digits”, which
is not simply a material implication. Essentially this know-what operator packages a
first-order quantifier and an S5-modality together in a non-trivial way, thus making it
hard to axiomatize. In [16] an axiomatization is given for the single-agent epistemic
logic with both know-that and know-what operators, while leaving axiomatizing the
multi-agent case open due to various technical difficulties. In this paper, we solve this
open problem. The completeness proof is highly non-trivial, compared to the single-
agent case, which requires different techniques inspired by first-order intensional logic.

Keywords: knowing what, first-order intensional logic, epistemic logic, conditional
knowledge.

1 Introduction

Epistemic Logic (EL), since its birth, has been mainly focusing on reasoning
about propositional knowledge, the knowledge expressed by “i knows that φ”.
However, besides “knowing that”, there are apparently various types of know-
ledge used in everyday life, expressed by “knowing what” (i knows what d is),
“knowing how” (i knows how to do φ), “knowing whether”(i knows whether φ)
and so on. A natural question which keeps philosophers busy is to ask whether
these types of knowledge can be reduced to propositional knowledge. For ex-
ample, there is a long-lasting debate in philosophy on whether “knowing how”
can be reduced to “knowing that” ever since the seminal work of Ryle [12].
Compared to this heated discussion, “knowing what” received relatively little
attention despite efforts trying to unify “knowing wh-” (what, where, which,
who, why) and “knowing how” in terms of “knowing that” (e.g., [13]).

On the other hand, in computer science and AI, “knowing what” plays an
important role, as argued by McCarthy [9]. In particular, in a security setting,



570 Conditionally Knowing What

we need to express that “He knows that she knows [what] her own private key
[is], but he does not know what exactly the key is.” The literal translation
of this sentence in terms of the usual know-that modal operator Ki does not
work since K1K2p ∧ ¬K1p is not consistent in the standard epistemic logic
with T axiom. This fact has lead a number of authors to propose suitable new
knowledge operators (e.g., [11,6]). In [10], one of the defining works of dynamic
epistemic logic, Plaza introduced a very natural modal operator Kvi to express
knowing what in a dynamic epistemic setting. Kvid expresses exactly that “i
knows what d is”. As for the semantics, Kvid is true on a pointed epistemic
model with world-dependent assignments for d iff d has the same value on all
the epistemically accessible worlds for i. In this setting, it is perfectly possible
that K1Kv2d ∧ ¬Kv1d since two kinds of knowledge are treated differently.

In [16], we generalize the Kvi operator to a conditional one and ob-
tain a complete axiomatization of the single-agent public announcement logic
with both know-that and know-what operators. 1 The resulting new formula
Kvi(φ, d) expresses that “agent i knows what d is, given φ.” For example, as it
happens a lot in this internet age, I may forget my own login password for some
website, but I know if the password is 4-digit then it must be 1234, since I have
never used another 4-digit password (though I have several 6-digit passwords).
In such a case people often say “I know my password if it is 4-digit”. This can
be expressed as Kvi(p, d) where p denotes the proposition that the password is
4-digit. Note that this conditional knowledge is not an implication p → Kvid
nor Ki(p→ Kvid). The difference is that, according to the semantics, Kvi(φ, d)
essentially expresses what i would know if he were informed that φ. This dis-
tinction will become clear when we define the operator formally. In this light,
there is clearly a connection to Public Announcement Logic [10]: to know what
d is given φ is similar to knowing what d is after the announcement φ. 2

This kind of conditional knowledge has a philosophical connection to the
phenomenon of elusive knowledge studied by Lewis [8]: “Maybe we do know
a lot in daily life; but maybe when we look hard at our knowledge, it goes
away.” One explanation is that what we claim to know is mainly conditional
knowledge where the conditions are often implicit, e.g., “I know I have hands”
can be viewed as an abbreviation of “I know I have hands, given that I am not
a brain in the vat”. This holds for all kinds of common sense “knowledge” that
we have in every day life, which invites systematic logical study.

Coming back to the technical storyline, note that the original Kvi operator
is a special case of the conditional one since Kvid is simply Kvi(>, d). Then
it is natural to ask whether the epistemic logic extended with conditional Kvi
(call it ELKvr) is more expressive than the epistemic logic with the standard
Kvi operator (call it ELKv). In [16] we show that ELKvr is indeed strictly

1 We called the conditional version of Kvi the relativized Kvi operator in [16], due to the
similarity between it and the relativized common knowledge operator introduced in [15]
2 Though there is still a difference: we do not require φ to be truthful in Kvi(φ, d): φ can
be just hypothetical.
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more expressive than ELKv. More interestingly, we show that adding the
public announcement operators to ELKvr does not increase the expressive
power, i.e., ELKvr is closed under announcement updates. As in the standard
epistemic logic, this is a good property for a logic as a foundation of epistemic
reasoning (cf. e.g.,[14]).

To really layout the foundation for reasoning about both knowing that and
knowing what, we need to axiomatize ELKvr. In [16], an interesting system is
given to axiomatize the single-agent ELKvr. The completeness proof relies on
a canonical model construction which consists of two copies of each maximal
consistent set. However, such a method does not generalize to the multi-agent
case thus leaving the axiomatization of the multi-agent ELKvr open.

In this paper, we solve this open problem by showing that the multi-agent
version of the system proposed in [16] is indeed complete for the multi-agent
ELKvr. The techniques used here are quite different from the single-agent
completeness proof and are inspired by the following observation: ELKvr can
be viewed as a fragment of first-order intensional logic (FOIL) proposed and
studied in [4,5]. FOIL features two kinds of variables: the object (rigid) vari-
ables and the intension (non-rigid) variables where the latter variables range
over the functions from the set of possible worlds to the set of objects. A
technique called predicate abstraction is applied to abstract predicates from
formulas. Now consider the following fragment (FOIL−) of FOIL where the
non-rigid variables are not quantified, the only predicates are unary ones over
rigid variables, and the only (implicit) predicate abstraction is applied to equal-
ities between a rigid variable x and a non-rigid variable d: 3

φ ::= > | Px | d = x | ¬φ | φ ∧ φ | Kiφ | ∀xφ

ELKvr can then be viewed as a small fragment of FOIL− by recursively trans-
lating Kvi(φ, d) into ∃xKi(φ

′ → d = x) where φ′ is the FOIL−-translation of φ.
Actually, this first-order formulation is also in accordance with the treatment
of “knowing-wh” in terms of “knowing that” in [7,13]. In this way we can see
clearly that Kvi packages a first-order quantifier and a modality together.

This observation motivates our construction of the canonical model for
multi-agent ELKvr. However, the method for axiomatizing FOIL as in [5]
cannot be applied directly here, due to two reasons: first, our language is much
weaker and we cannot express the desired first-order axioms in ELKvr; second,
to our knowledge, it is unknown, how to axiomatize FOIL on S5 frames due
to the diffcuities introduced by symmetry property as explained in [5]. In this
work, we found a way to provide just enough extra information in the states of
the canonical model to encode the “omitted” information expressible by poten-
tial FOIL− formulas, while keeping it controlled by purely ELKvr axioms. We
believe that this method can be applied to other similar fragments of first-order
intensional logic (over S5 frames).

3 In Fitting’s syntax of FOIL, d = x should be formalized as 〈λy.y = x〉(d) (cf. [5]). Here,
d may also be viewed as a constant since it is never quantified in the language.
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In the rest of this paper, we first review the syntax and semantics of multi-
agent ELKvr and the proof system ELKVrin Section 2. In Section 3, we prove
our main result that ELKVr completely axiomatizes multi-agent ELKvr. We
conclude with future work in Section 4.

2 Preliminaries

Given a countably infinite set of proposition letters P, a countably infinite set
of agent names I, and a countably infinite set of (non-rigid) constant symbols
D, the language of ELKvr is defined as follows:

φ ::= > | p | ¬φ | (φ ∧ φ) | Kiφ | Kvi(φ, d)

where p ∈ P, i ∈ I, d ∈ D.
Kiφ says that the agent i knows that φ. Kvi(φ, d) says that the agent

i knows what d is, given φ. More precisely, Kvi(φ, d) says that the agent i
would know what d is if he were informed that φ. The original (unconditional)
Kvid formulas proposed in [10] can be viewed as Kvi(>, d). As usual, we
define ⊥, (φ ∨ ψ), (φ → ψ), (φ ↔ ψ), K̂iφ as the abbreviations of, respectively,
¬>,¬(¬φ ∧ ¬ψ), (¬φ ∨ ψ), ((φ→ ψ) ∧ (ψ → φ)),¬Ki¬φ. We omit parentheses
from formulas unless confusion results.

ELKvr is interpreted on epistemic models with assignments for the ele-
ments in D: M = 〈S,O, {∼i| i ∈ I}, V, VD〉 where S is a non-empty set of
possible worlds, O is a non-empty set of objects, ∼i is an equivalence relation
over S, and V is a valuation function assigning a set of worlds V (p) ⊆ S to each
p ∈ P, and VD : D× S → O is a function assigning each d ∈ D at each world
an object. In terms of first-order intensional logic [4], M is an S5 intensional
model with a constant domain O and assignments for non-rigid variables in D.
Note that for each d ∈ D, VD(d, ·) is a function from S to O which can be
viewed as an intension as in [4]. The semantics is defined as follows:

M, s � > always holds
M, s � p ⇔ s ∈ V (p)
M, s � ¬φ ⇔ M, s 2 φ
M, s � φ ∧ ψ ⇔ M, s � φ and M, s � ψ
M, s � Kiψ ⇔ for all t such that s ∼i t :M, t � ψ
M, s � Kvi(φ, d) ⇔ for any t1, t2 ∈ S such that s ∼i t1 and s ∼i t2 :

if M, t1 � φ and M, t2 � φ, then VD(d, t1) = VD(d, t2)

Intuitively, Kvi(φ, d) is true at s iff all the i-accessible φ-worlds agree on the
value of d. In other words, i knows what d is given φ iff he is sure about d’s
value on φ-worlds. Based on this semantics, we can see clearly that Kvi(φ, d) is
indeed different from φ → Kvid and Ki(φ → Kvid). The condition φ restricts
the accessible worlds to be considered, and we then check whether d has the
same value on these “relative alternatives”.

In [16], we give a complete axiomatization of the single agent ELKvr and
the following is the multi-agent version of that system which is an extension
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of the multi-modality S5.
System ELKVr

Axiom Schemas
TAUT all the instances of tautologies
DISTK Ki(φ→ ψ)→ (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
DISTKvr Ki(φ→ ψ)→ (Kvi(ψ, d)→ Kvi(φ, d))
Kvr4 Kvi(φ, d)→ KiKvi(φ, d)
Kvr⊥ Kvi(⊥, d)

Kvr∨ K̂i(φ ∧ ψ) ∧Kvi(φ, d) ∧Kvi(ψ, d)→ Kvi(φ ∨ ψ, d)

Rules

MP
φ, φ→ ψ

ψ

NECK
φ

Kiφ

RE
ψ ↔ χ

φ↔ φ[ψ/χ]

where RE is the rule of replacement of equivalents, which plays an important
role in the later proofs. In the rest of the paper, we use ` to denote the
derivation relation within ELKVr.

Note that Kvi operators do not behave like modalities in a normal modal lo-
gic and the (obvious adaptations of) necessitation rule and the K axiom are not
valid for Kvi. Instead, we have the distribution axiom schema DISTKvr(note
the swap of ψ and φ in the consequent). Kvr4 is the counter part of the positive
introspection axiom 4, and Kvr⊥ stipulates the effect of the absurd precondi-
tion. The most important axiom is Kvr∨ which handles the composition of the
conditions: if all the possible φ-worlds agree on what d is and all the possible
ψ-worlds also agree on d, then the overlap between φ possibilities and ψ pos-
sibilities implies that all the φ∨ψ possibilities also agree on what d is. We can
show that the above system is sound (cf. [16, Theorem 11]).

To facilitate the later proofs, we need the following propositions.

Proposition 2.1 (i) ` ¬Kiφ↔ Ki¬Kiφ

(ii) The rule (RM):
φ→ ψ

K̂iφ→ K̂iψ
is admissible in ELKVr.

(iii) ` ¬Kvi(φ, d)↔ Ki¬Kvi(φ, d)

Proof (i) and (ii) are standard exercises in S5. The ← direction in (iii) is
trivial due to T. We show the other way around:

KiKvi(φ, d)↔ Kvi(φ, d) T, Kvr4

¬KiKvi(φ, d)→ Ki¬KiKvi(φ, d) 5

¬Kvi(φ, d)→ Ki¬Kvi(φ, d) RE

2

Note that the→ half of (iii) can be viewed as the Kvi counterpart of 5 thus
we denote it by Kvr5.

Another useful observation is that Kvr∨ can be generalized to arbitrary
finite disjunctions as the following proposition shows.
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Proposition 2.2 For any non-empty finite set U of ELKvr formulas:

` K̂i(
∧
U) ∧

∧
φ∈U

Kvi(φ, d)→ Kvi(
∨
U, d).

Proof If |U | = 1 then the statement holds trivially. Suppose |U | ≥ 2, we prove
the statement by an inductive proof on |U |. The case of |U | = 2 is immediate
due to Kvr∨. Suppose the claim holds when |U | = k. Now consider the case
|U | = k + 1, and let U = U ′ ∪ {ψ} such that |U ′| = k:

(i) K̂i(
∧
U ′) ∧

∧
φ∈U ′ Kvi(φ, d)→ Kvi(

∨
U ′, d) IH

(ii) Kvi(
∨
U ′, d) ∧Kvi(ψ, d) ∧ K̂i(

∨
U ′ ∧ ψ)→ Kvi(

∨
U, d) Kvr∨

(iii) K̂i(
∧
U) ∧

∧
φ∈U Kvi(φ, d) TAUT

→ K̂i(
∧
U ′) ∧

∧
φ∈U ′ Kvi(φ, d) ∧Kvi(ψ, d) ∧ K̂i(

∨
U ′ ∧ ψ) DISTK, NECK

(iv) K̂i(
∧
U) ∧

∧
φ∈U Kvi(φ, d)→ Kvi(

∨
U, d) (i)(ii)(iii)

2

The following proposition essentially says if d has the same value over ac-
cessible φ- and ψ-worlds respectively, and there are a φ-world and a ψ-world
sharing the same d value, then d has the same value over accessible φ∨ψ-worlds.
This proposition allows us to relax the antecedent of Kvr∨ a little bit to make
it more useful.

Proposition 2.3 For any φ, ψ, χ ∈ ELKvr, any d ∈ D:
` K̂i(φ ∧ χ) ∧ K̂i(ψ ∧ χ) ∧Kvi(φ, d) ∧Kvi(ψ, d) ∧Kvi(χ, d)→ Kvi(φ ∨ ψ, d)

Proof

(i) K̂i(φ ∧ χ) ∧Kvi(φ, d) ∧Kvi(χ, d)→ Kvi(φ ∨ χ, d) Kvr∨
(ii) K̂i(ψ ∧ χ) ∧Kvi(ψ, d) ∧Kvi(χ, d)→ Kvi(ψ ∨ χ, d) Kvr∨

(iii) φ ∧ χ→ (φ ∨ χ) ∧ (ψ ∨ χ) TAUT

(iv) K̂i(φ ∧ χ)→ K̂i((φ ∨ χ) ∧ (ψ ∨ χ)) RM, (iii)

(v) K̂i((φ ∨ χ) ∧ (ψ ∨ χ)) ∧Kvi(φ ∨ χ, d) ∧Kvi(ψ ∨ χ, d)
→ Kvi(φ ∨ ψ ∨ χ, d) Kvr∨

(vi) K̂i(φ ∧ χ) ∧ K̂i(ψ ∧ χ) ∧Kvi(φ, d) ∧Kvi(ψ, d) ∧Kvi(χ, d)
→ Kvi(φ ∨ ψ ∨ χ, d) (i)(ii)(iv)(v)

(vii) φ ∨ ψ → φ ∨ ψ ∨ χ TAUT

(viii) Ki(φ ∨ ψ → φ ∨ ψ ∨ χ) NECK, (vii)
(ix) Ki(φ ∨ ψ → φ ∨ ψ ∨ χ)→ Kvi(φ ∨ ψ ∨ χ, d)

→ Kvi(φ ∨ ψ, d) DISTKvr

(x) Kvi(φ ∨ ψ ∨ χ, d)→ Kvi(φ ∨ ψ, d) MP, (viii)(ix)

(xi) K̂i(φ ∧ χ) ∧ K̂i(ψ ∧ χ) ∧Kvi(φ, d) ∧Kvi(ψ, d) ∧Kvi(χ, d)
→ Kvi(φ ∨ ψ, d) (vi)(x)

2

3 Completeness of multi-agent ELKVr

To prove the completeness, we need to build a canonical model such that each
maximal consistent set of ELKVr is satisfied in it. The general difficulty is as
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in the single-agent case: just using the maximal consistent sets as the states
in the canonical model is not enough, more information should be provided in
the states of the canonical model. As we mentioned, the Kvi(φ, d) formulas
can be viewed as ∃xKi(φ → d = x) where x is a rigid variable and d is a
non-rigid one. To build a canonical model for such a first-order intensional
logic, we need to include atomic formulas such as d = x and modal formulas
such as Ki(φ → d = x) and control their interactions by axioms. However,
those formulas are not expressible in ELKvr since we simply cannot say what
d exactly is. Therefore, in the canonical model, we need to equip the ELKVr-
maximal consistent sets with information which can function as those atomic
formulas. Moreover, we need to specify how such extra information is related
to the ELKVr-maximal consistent sets. Note that since ELKVr is very limited
we cannot enforce the extra information behave exactly like the intended first-
order intensional formulas. The real difficulty is to find the requirements which
are “just enough” to make sure the truth lemma holds and this is the most
fundamental idea behind our definition of the canonical model. It will also
become more clear why the single-agent case is much simpler (cf. Remark 3.6).

3.1 Canonical model

In the sequel we define our canonical model with the set of natural numbers N
as the constant domain of objects. 4

Definition 3.1 Let MCS be the set of maximal consistent sets w.r.t. ELKVr,
and let N be the set of natural numbers. The canonical model Mc of ELKVr
is a tuple 〈Sc,N, {∼ci | i ∈ I}, V c, V cD〉 where:

• Sc consists of all the triples 〈Γ, f, g〉 ∈ MCS × ND × (N ∪ {?})I×ELKvr×D

that satisfy the following three conditions for any i ∈ I, any ψ, φ ∈ ELKvr,
and any d ∈ D :
(i) g(i, ψ, d) = ? iff Kvi(ψ, d) ∧ K̂iψ /∈ Γ,
(ii) If g(i, φ, d) 6= ? and g(i, ψ, d) 6= ? then: g(i, φ, d) = g(i, ψ, d) iff

there exists a χ such that Kvi(χ, d) and K̂i(φ∧χ) and K̂i(ψ ∧χ) are in Γ.
(iii) ψ ∧Kvi(ψ, d) ∈ Γ implies f(d) = g(i, ψ, d).
For any s ∈ Sc, we write φ ∈ s if φ is in the maximal consistent set of s and
write φ ∈ s ∩ t if φ ∈ s and φ ∈ t. fs and gs are used as the corresponding
functions in s, and gs(i) is the function from ELKvr×D to N∪{?} induced
by gs fixing a particular i ∈ I.

• s ∼ci t iff {φ | Kiφ ∈ s} ⊆ t and gs(i) = gt(i)

• V cD(d, s) = fs(d)

Remark 3.2 Intuitively, f is roughly functioning as the collection of d = x
formulas, and g is roughly functioning as the collection of Ki(ψ → d = x)
formulas. Now for the intuitive ideas behind the three conditions:

4 Note that this countable set is indeed big enough, since the (countable) language of ELKvr

can be translated into first-order intensional logic, which can be again translated into 3-sorted
first-order logic, which still enjoys Löwenheim-Skolem property (cf. [1]).
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• (i): We use ? to mark that the value of g(i, ψ, d) is irrelevant. If Kvi(ψ, d) 6∈ Γ
then of course the value of g(i, ψ, d) is irrelevant. If Kvi(ψ, d) ∈ Γ but Ki¬ψ ∈
Γ, then the condition ψ is never possible for i thus the value of g(i, ψ, d) is
also irrelevant. Condition (i) is mainly for the technical convenience.

• (ii): This condition handles how the g values are inter-related. Intuitively, it
roughly says that x = y iff (Ki(ψ → d = x) and Ki(φ → d = y), and there
are some accessible ψ-world and φ-world which share the same value of d).

• (iii): Intuitively, this condition says that if Ki(ψ → d = x) and ψ is indeed
true then d = x.

The definition of ∼ci is in spirit the same as in the canonical model for
the standard epistemic logic. The extra condition gs(i) = gt(i) says the i-
indistinguishable worlds should satisfy the same Ki(ψ → d = x) formulas.

Condition (i), (ii), (iii) and the definition of ∼ci specify the minimal require-
ments of the extra information attached to maximal consistent sets. We need
to control them without using FOIL− formulas.

To show the above model is indeed an epistemic model, we need the follow-
ing proposition:

Proposition 3.3 For any i ∈ I, ∼ci is an equivalence relation.

Proof As a standard exercise in modal logic, by using T, 4, and 5, we can
prove the following claim:

(for all φ : Kiφ ∈ s implies φ ∈ t) iff (for all φ : Kiφ ∈ s iff Kiφ ∈ t) (∗).

Thus s ∼ci t iff {φ | Kiφ ∈ s} = {φ | Kiφ ∈ t} and gs(i) = gt(i). Then it is easy
to see ∼ci is an equivalence relation.

2

Based on the above claim (∗), using T and Kvr4, the following is immediate:

Proposition 3.4 For any two maximal consistent sets ∆ and Γ, if {φ | Kiφ ∈
∆} ⊆ Γ, then the following hold for all φ:

• Kiφ ∈ ∆ iff Kiφ ∈ Γ

• K̂iφ ∈ ∆ iff K̂iφ ∈ Γ

• Kvi(φ, d) ∈ ∆ iff Kvi(φ, d) ∈ Γ.

3.2 Completeness

In order to establish the truth lemma, the most difficult things are the existence
lemmas for Ki and Kvi operators. Since the states in the canonical models are
not merely maximal consistent sets, more efforts are required.

We first propose a general method to construct proper successors. This can
be viewed as some kind of Lindenbaum’s Lemma, though highly non-trivial in
this case, if we view g and f as collections of “hidden formulas”.
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Proposition 3.5 Given a state s ∈ Sc, an agent i ∈ I, and a maximal con-
sistent set Γ such that {φ | Kiφ ∈ s} ⊆ Γ, and any natural number x, we have
a deterministic method to construct t = 〈Γ, f, g〉 based on s, Γ, and x such that
t ∈ Sc and s ∼ci t.

Proof The construction and the proof are quite involved: we first build f
and build g by using finite approximations and show that the constructions
are well-defined; then we show that the 〈Γ, f, g〉 satisfy the three conditions of
states in Sc and that s ∼ci t. In the following, we fix a natural number x.

Let T 0 = {〈j, φ, d〉 | j = i or φ ∧Kvj(φ, d) ∈ Γ}. Let g0 : T 0 → N ∪ {?} be
defined as follows:

g0(j, φ, d) =

 gs(i, φ, d) if j = i
gs(i, ψ, d) if j 6= i and ψ ∧Kvi(ψ, d) ∈ Γ for some ψ
x if otherwise

We need to show that the second case is well-defined: the choice of ψ does
not affect the value of gs(i, ψ, d), namely ψ∧Kvi(ψ, d) ∈ Γ and ψ′∧Kvi(ψ

′, d) ∈
Γ implies gs(i, ψ, d) = gs(i, ψ

′, d). Suppose that ψ ∧ Kvi(ψ, d) ∈ Γ and ψ′ ∧
Kvi(ψ

′, d) ∈ Γ, then the following formulas are also in Γ: K̂iψ
′, K̂iψ, K̂i(ψ

′ ∧
ψ) due to the contrapositive of Axiom T. By Proposition 3.4, the following
formulas are all in s: K̂i(ψ

′ ∧ ψ), K̂iψ
′, K̂iψ, Kvi(ψ

′, d), and Kvi(ψ, d). Now it
is clear that gs(i, ψ, d) 6= ? and gs(i, ψ

′, d) 6= ? due to condition (i) of s. Let
χ = ψ′ now we have Kvi(χ, d) and K̂i(ψ

′ ∧ χ) and K̂i(ψ ∧ χ) are all in s. By
condition (ii) of s, gs(i, ψ

′, d) = gs(i, ψ, d).
Now we define f as follows:

f(d) =

{
g0(j, φ, d) if Kvj(φ, d) ∧ φ ∈ Γ for some φ and j
x if otherwise

We need to show that the first case is well-defined: the choices of φ and j do not
affect the value of g0(j, φ, d), namely φ ∧Kvj(φ, d) ∈ Γ and ψ ∧Kvk(ψ, d) ∈ Γ
implies g0(j, φ, d) = g0(k, ψ, d). To see this, consider four cases:

• j = i and k = i. Then due to the above proof and the first clause of the
definition of g0, we have g0(j, φ, d) = gs(i, φ, d) = gs(i, ψ, d) = g0(k, ψ, d).

• j 6= i and k 6= i. If there exists χ such that χ ∧ Kvi(χ, d) ∈ Γ, then by the
second clause of g0, we have g0(j, φ, d) = gs(i, χ, d) = g0(k, ψ, d); otherwise,
by the third clause of g0, we have g0(j, φ, d) = x = g0(k, ψ, d).

• j = i and k 6= i. From the first clause of g0, it follows that g0(j, φ, d) =
gs(i, φ, d). Due to the fact that φ ∧ Kvi(φ, d) ∈ Γ and the second clause of
g0, we have g0(k, ψ, d) = gs(i, φ, d), thus g0(j, φ, d) = g0(k, ψ, d).

• j 6= i and k = i. Similar to the third case.

Now let ∆ be the set of the remaining non-i-triples:

∆ = {〈j, φ, d〉 | j 6= i, φ ∧Kvj(φ, d) 6∈ Γ, j ∈ I, φ ∈ ELKvr, d ∈ D}.
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Due to the fact that D, I and ELKvr are countable, we can enumerate ∆
as δ1, δ2, . . . and approximate g step by step by extending the domain of gk

with δk+1. Let ∆k be {δl | 1 ≤ l ≤ k}, and in particular ∆0 = ∅. Let Λk be
{gk(δ) | δ ∈ ∆k} and let max be the function which assigns to each non-empty
finite set of natural numbers its maximum. Let Dom(gk) be the domain of gk.
For k ≥ 0, our construction of gk+1 : T 0 ∪ ∆k+1 → N ∪ {?} is as follows: let
gk+1(j, φ, d) = gk(j, φ, d) if 〈j, φ, d〉 ∈ Dom(gk) = T 0 ∪ ∆k, and for the only
new 〈j, φ, d〉 6∈ Dom(gk) (thus j 6= i) we have:

gk+1(j, φ, d) =



? if K̂jφ ∧Kvj(φ, d) 6∈ Γ

gk(j, ψ, d) if K̂jφ ∧Kvj(φ, d) ∈ Γ and there are
χ, ψ such that 〈j, ψ, d〉 ∈ Dom(gk)
and the following formulas are all

in Γ : K̂j(χ ∧ φ), K̂j(χ ∧ ψ),
Kvj(ψ, d), Kvj(χ, d)

max(Λk ∪ {f(d)}) + 1 if otherwise

Note that, we still need to show that the second case in the above definition
of gk+1 is well-defined. More precisely, we need to show for any k ≥ 0 any
j 6= i, the following (1) implies (2):

(1) there exist ψ,ψ′, χ, and χ′ such that 〈j, ψ, d〉 and 〈j, ψ′, d〉 are in Dom(gk)
and the following formulas are all in Γ: K̂j(χ ∧ ψ), K̂j(χ ∧ φ), K̂j(χ

′ ∧
ψ′), K̂j(χ

′ ∧ φ),Kvj(ψ, d),Kvj(ψ
′, d),Kvj(χ, d),Kvj(χ

′, d).

(2) gk(j, ψ, d) = gk(j, ψ′, d).

Induction on k:

• k = 0: 〈j, ψ, d〉 and 〈j, ψ′, d〉 are both in Dom(g0) = T 0 then according to
the definition of g0 and the fact that j 6= i, g0(j, ψ, d) = g0(j, ψ′, d).

• Induction Hypothesis: (1) implies (2) holds for all k ≤ n.

• k = n + 1 : w.l.o.g, we assume that at least one of (j, ψ, d) and (j, ψ′, d)
is not in Dom(g0), for otherwise the case is like the above one. Then we
can assume that there exists an m ≤ n such that 〈j, ψ, d〉 ∈ Dom(gm),
〈j, ψ′, d〉 6∈ Dom(gm), and 〈j, ψ′, d〉 is added into Dom(gm+1) by our con-
struction. Assuming (1), let θ be χ ∨ χ′, we can show K̂j(θ ∧ ψ) and

K̂j(θ ∧ ψ′) ∈ Γ since K̂j(χ ∧ ψ) and K̂j(χ
′ ∧ ψ′) are in Γ. Moreover, since

K̂j(χ∧φ), K̂j(χ
′∧φ),Kvj(χ, d),Kvj(χ

′, d),Kvj(φ, d) ∈ Γ, we have Kvj(θ, d) ∈
Γ by Proposition 2.3. Now we have K̂j(θ ∧ ψ), K̂j(θ ∧ ψ′), and Kvj(θ, d) are
all in Γ. According to our construction of gm+1, gm+1(j, ψ′, d) = gm(j, ψ, d)
and the induction hypothesis guarantees the uniqueness of gm(j, ψ, d) since
m ≤ n. Therefore gk(j, ψ′, d) = gm+1(j, ψ′, d) = gm(j, ψ, d) = gk(j, ψ, d).

Viewing each gk as a set of pairs 〈〈j, φ, d〉, gk(j, φ, d)〉, we let g be
⋃
k<ω g

k.

Now we need to verify conditions (i), (ii) and (iii). Condition (iii) is trivial
by the definition of f . We verify condition (i) and (ii) below.
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For condition (i): we first show that for the fixed i and any φ ∈ ELKvr,
any d ∈ D: g0(i, φ, d) 6= ? iff K̂iφ ∧ Kvi(φ, d) ∈ Γ. From right to left: suppose
that g0(i, φ, d) = ? then we have gs(i, φ, d) = ? thus K̂jφ ∧ Kvi(φ, d) 6∈ s,
i.e., Ki¬φ ∈ s or ¬Kvi(φ, d) ∈ s. By Proposition 3.4, we have Ki¬φ ∈ Γ
or ¬Kvi(φ, d) ∈ Γ, i.e., K̂iφ ∧ Kvi(φ, d) 6∈ Γ. From left to right: suppose
that g0(i, φ, d) 6= ? then K̂iφ ∧ Kvi(φ, d) ∈ s thus by Proposition 3.4 again,
K̂iφ ∧Kvi(φ, d) ∈ Γ.

Now consider 〈j, φ, d〉 ∈ Dom(g0) where j 6= i. By definition, φ∧Kvj(φ, d) ∈
Γ, thus K̂jφ ∧ Kvj(φ, d) ∈ Γ. By the construction of g0 it is clear that

g0(j, φ, d) 6= ?, since x 6= ? and the fact that K̂iψ ∧ Kvi(ψ, d) ∈ Γ implies
g0(i, ψ, d) 6= ? which we have just proved. This concludes the proof for the
base case: for any 〈j, φ, d〉 ∈ Dom(g0): g0(j, φ, d) 6= ? iff K̂jφ ∧ Kvj(φ, d) ∈ Γ.
The inductive case is obvious by the three cases of our construction of gk+1.

Condition (ii) is more complicated to verify and it requires an inductive
proof. We first claim the following:

Claim (◦): For each k ≥ 0, and any 〈j, ψ, d〉 and 〈j, φ, d〉 in Dom(gk) such
that gk(j, ψ, d) 6= ? and gk(j, φ, d) 6= ?, the following two are equivalent:

(1) gk(j, φ, d) = gk(j, ψ, d)

(2) there exists a χ such that Kvj(χ, d), K̂j(φ ∧ χ) and K̂j(ψ ∧ χ) are in Γ.

If claim (◦) holds then Condition (ii) holds too, since any 〈j, ψ, d〉 and 〈j, φ, d〉
must both exist in Dom(gk) for some k. Now we prove the claim (◦).
• If k = 0 then both 〈j, ψ, d〉 and 〈j, φ, d〉 are in Dom(g0). There are two

subcases:
· If j = i then we have g(j, φ, d) = g(j, ψ, d) iff g0(i, φ, d) = g0(i, ψ, d) iff
gs(i, φ, d) = gs(i, ψ, d) iff there exists a χ such that Kvi(χ, d) and K̂i(φ∧χ)
and K̂i(ψ ∧ χ) are all in s (by condition (ii) of s). According to Proposi-
tion 3.4, the last statement is equivalent to that there exists a χ such that
{Kvi(χ, d), K̂i(φ ∧ χ), K̂i(ψ ∧ χ)} ⊆ Γ.
· If j 6= i then clearly g(j, ψ, d) = g0(j, ψ, d) = g0(j, φ, d) = g(j, φ, d) by the

definition of g0. Now since g(j, ψ, d) 6= ?, Kvj(ψ, d) ∈ Γ due to condition
(i) of Γ which we have just verified. Since 〈j, ψ, d〉 and 〈j, φ, d〉 are both in
Dom(g0) = T 0, we have φ, ψ ∈ Γ, thus K̂j(φ ∧ ψ) ∈ Γ by axiom T. Finally

we have {Kvj(χ, d), K̂j(φ ∧ χ), K̂j(ψ ∧ χ)} ⊆ Γ given χ = ψ.

• Induction Hypothesis: the claim (◦) holds for k ≤ m.

• Suppose k = m+1 and at least one of 〈j, φ, d〉 and 〈j, ψ, d〉 is not in Dom(gm),
for otherwise it can be handled by IH. Then clearly j 6= i for otherwise
both triples are in Dom(g0) thus in Dom(gm). W.l.o.g, we can assume that
〈j, ψ, d〉 ∈ Dom(gm) and 〈j, φ, d〉 6∈ Dom(gm) but 〈j, φ, d〉 ∈ Dom(gm+1),
i.e., 〈j, φ, d〉 is added at step m + 1. By assumption gm+1(j, φ, d) 6= ? and
gm+1(j, ψ, d) 6= ?, then by condition (i) K̂jφ ∧ Kvj(φ, d) ∈ Γ and K̂jψ ∧
Kvj(ψ, d) ∈ Γ. Now if there exists a χ such that K̂j(χ ∧ ψ) ∧ K̂j(χ ∧ φ) ∧
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Kvj(χ, d) ∈ Γ then by the second clause of the definition of gm+1 we have
gm+1(j, φ, d) = gm(j, ψ, d) = gm+1(j, ψ, d). This proves that (2) implies (1).

For the other direction, suppose that gm+1(j, φ, d) = gm+1(j, ψ, d) =
gm(j, ψ, d) 6= ?, due to the definition of gm+1, gm+1(j, φ, d) must be con-
structed according to the second clause, for the third clause can make sure
gm+1(j, φ, d) 6= gm(j, ψ, d). To see this, note that if 〈j, ψ, d〉 ∈ Dom(g0) then
gm(j, ψ, d) = g0(j, ψ, d) = f(d) by the definition of g0 (note that j 6= i).
The third clause guarantees that gm+1(j, φ, d) > f(d) = gm(j, ψ, d). If
〈j, ψ, d〉 /∈ Dom(g0) then the third clause guarantees that gm+1(j, φ, d) >
max(Λm) ≥ gm(j, ψ, d).

Now, if gm+1(j, φ, d) is constructed by the second clause based on
gm(j, ψ, d) then (2) is immediate. Suppose otherwise that gm+1(j, φ, d) is
constructed based on gm(j, θ, d) for some θ 6= ψ, such that gm(j, θ, d) =
gm(j, ψ, d) 6= ?, then there exists a ξ such that K̂j(ξ ∧ θ) ∧ K̂j(ξ ∧ φ) ∧
Kvj(ξ, d) ∈ Γ. Since gm(j, θ, d) 6= ?, by condition (i) we also have
Kvj(θ, d) ∈ Γ. Since gm(j, θ, d) = gm(j, ψ, d) 6= ?, by IH, there ex-

ists ξ′ such that K̂j(ξ
′ ∧ ψ) ∧ K̂j(ξ

′ ∧ θ) ∧ Kvj(ξ
′, d) ∈ Γ. Now we have

K̂j(ξ ∧ θ), K̂j(ξ
′ ∧ θ),Kvj(ξ, d),Kvj(ξ

′, d) and Kvj(θ, d) all in Γ. By Proposi-

tion 2.3, Kvj(ξ ∨ ξ′, d) ∈ Γ. Let χ = ξ ∨ ξ′. Since K̂j(ξ ∧ φ) and K̂j(ξ
′ ∧ ψ)

are in Γ, we have K̂j(χ ∧ φ), K̂j(χ ∧ ψ) and Kvj(χ, d) are all in Γ, and this
completes the proof of claim (◦). Thus 〈Γ, f, g〉 satisfies the condition (ii).

In sum, 〈Γ, f, g〉 ∈ Sc, and s ∼ci 〈Γ, f, g〉 due to the facts that g(i) = gs(i)
(by the construction of g0) and the assumption that {φ | Kiφ ∈ s} ⊆ Γ. 2

Remark 3.6 To build an i-successor of s, we need to construct a proper g such
that it takes care of the information not only about i but also about j 6= i.
Note that if I = {i}, then g(i) = gs(i) implies g = gs. In this case we do not
need the above construction, thus the single-agent case is much simper.

Important notation In the sequel, we refer to the above construction of f
as F (s, i,Γ, x) where x is a natural number as a parameter.

Now we are ready to prove two important existence lemmas:

Lemma 3.7 For any s ∈ Sc, any i ∈ I: Kiψ 6∈ s implies there is a world t
such that s ∼ci t and ¬ψ ∈ t.

Proof It is a standard exercise in modal logic to show that X = {¬ψ} ∪ {φ |
Kiφ ∈ s} is consistent. Then by Lindenbaum Lemma for ELKvr, there exists
an MCS Γ including X. Now from Proposition 3.5 we can equip Γ with some
proper f and g, such that 〈Γ, f, g〉 ∈ Sc and s ∼ci 〈Γ, f, g〉. 2

Lemma 3.8 For any s ∈ Sc, any i ∈ I: ¬Kvi(φ, d) ∈ s implies there are two
states w, v in Sc such that s ∼ci w, s ∼ci v, φ ∈ w ∩ v, and fw(d) 6= fv(d).

The proof of the above lemma is again quite involved, we break it into
Proposition 3.9 and Proposition 3.10 below.
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Proposition 3.9 Given any s ∈ Sc and any i ∈ I, suppose there exist two
(possibly identical) maximal consistent sets Γ1 and Γ2 such that:

(a) {ψ | Kiψ ∈ s} ⊆ Γ1 ∩ Γ2

(b) for any Kvi(θ, d) ∈ s, θ 6∈ Γ1 ∩ Γ2.

then Γ1 and Γ2 can be extended into two states w, v in Sc such that s ∼ci w,
s ∼ci v and fw(d) 6= fv(d).

Proof By condition (a) and Proposition 3.5, Γ1 and Γ2 can be extended into
two i-accessible states by using F (s, i,Γ1, x) and F (s, i,Γ2, y). We argue that
condition (b) and condition (ii) of s allow us to construct two states in Sc that
differ in the value of d. Consider the following cases:

• Suppose that there is no Kvi(χ, d) ∧ χ ∈ Γ1 for any χ. Note that in this
case if fw = F (s, i,Γ1, x) then fw(d) = x. Now let fv = F (s, i,Γ2, 0) and
let fw = F (s, i,Γ1, fv(d) + 1). Clearly fw(d) = fv(d) + 1 6= fv(d). The
symmetric case when there is no Kvi(χ, d) ∧ χ ∈ Γ2 for any χ is similar.

• Suppose there exists Kvi(χ, d)∧χ ∈ Γ1 for some χ and there exists Kvi(χ
′, d)∧

χ′ ∈ Γ2 for some χ′. Now let fw = F (s, i,Γ1, 0) and fv = F (s, i,Γ2, 0) we
have fw(d) = gs(i, χ, d) and fv(d) = gs(i, χ

′, d). We need to show gs(i, χ, d) 6=
gs(i, χ

′, d). Towards contradiction suppose gs(i, χ, d) = gs(i, χ
′, d) then by

condition (ii) of s, there exists θ such that Kvi(θ, d) and K̂i(θ ∧ χ) and
K̂i(θ∧χ′) are in s. Note that due to Proposition 3.4, Kvi(χ, d) and Kvi(χ

′, d)
are in s. Now by Proposition 2.3, Kvi(χ ∨ χ′, d) ∈ s. However, since χ ∈ Γ1

and χ′ ∈ Γ2, χ ∨ χ′ ∈ Γ1 ∩ Γ2, which contradicts to the assumption (b).
2

In [16], we proved the following proposition in the single agent case. The
proof for the multi-agent version is almost the same.

Proposition 3.10 Given any s ∈ Sc and any i ∈ I, suppose ¬Kvi(φ, d) ∈ s
then there are two (possibly identical) maximal consistent sets Γ1 and Γ2 such
that:

(a’) {φ} ∪ {ψ | Kiψ ∈ s} ⊆ Γ1 ∩ Γ2

(b) for any Kvi(θ, d) ∈ s, θ 6∈ Γ1 ∩ Γ2.

Proof Let Z = {ψ | Kiψ ∈ s} ∪ {φ} and let X = {¬θ | Kvi(θ, d) ∈ s}. Note
that due to Kvr⊥, X is non-empty. 5 We want to build two consistent sets B
and C such that Z ⊆ B ∩ C and X ⊆ B ∪ C. Then by a Lindenbaum-like
argument over countable language, we can extend B and C into the desired Γ1

and Γ2: (a′) is guaranteed by Z ⊆ B ∩C, and (b) is guaranteed by X ⊆ B ∪C

5 Kvr⊥ is indispensable in the proof system ELKVr. We can show that it is not provable
in ELKVr − Kvr⊥ by designing an alternative semantics which coincides with the standard
semantics for Kvi-free formulas but falsifies all the Kvi(φ, d) formulas for any i, φ and d. It
is not hard to see that ELKVr−Kvr⊥ is sound w.r.t. this new semantics but Kvi(⊥, d) is not
valid, thus Kvr⊥ is not provable in ELKVr.
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which says that for any Kvi(θ, d) ∈ s, ¬θ ∈ B or ¬θ ∈ C thus θ 6∈ Γ1 or θ 6∈ Γ2.
In the following we build B and C.

The idea is straightforward: simply adding the formulas in X one by one
into two copies of Z while keeping the consistency. Formally, we enumerate
formulas in X as ¬θ0,¬θ1, . . . and let B0 = Z ∪ {¬θ0} and let C0 = Z as the
starting points. Then we build Bn+1 and Cn+1 based on the already defined
Bn and Cn by adding ¬θn+1 into one of them:

(i) if ¬θn+1 is consistent with Bn then Bn+1 = Bn∪{¬θn+1} and Cn+1 = Cn;

(ii) if ¬θn+1 is not consistent with Bn then Bn+1 = Bn and Cn+1 = Cn ∪
{¬θn+1}.

Let B =
⋃
n<ω Bn, C =

⋃
n<ω Cn and we need to show that B and C are

consistent. Note that B (C) is consistent iff Bn (Cn) is consistent for each n,
since if B (C) is not consistent then there must be an n such that Bn (Cn) is
not consistent, due to the finitary nature of logical consistency. In the following
we show Bn and Cn are consistent by induction on n.

• n = 0: Suppose towards contradiction that B0 is not consistent, then there
exist ψ1, . . . , ψm ∈ {ψ | Kiψ ∈ s} such that ` ψ1 ∧ · · · ∧ ψm ∧ φ → θ0, i.e.,
` ψ1 ∧ · · · ∧ ψm → (φ→ θ0). Therefore ` Kiψ1 ∧ · · · ∧Kiψm → Ki(φ→ θ0)
by DISTK, NECK and RE. Since Kiψ1, . . . ,Kiψm ∈ s, Ki(φ→ θ0) ∈ s. Now by
DISTKvr and the fact that Kvi(θ0, d) ∈ s (since X is non-empty), it follows
that Kvi(φ, d) ∈ s, contradiction. Since C0 ⊆ B0, C0 is also consistent.

• n = k + 1: by the induction hypothesis Bk and Ck are consistent. Accord-
ing to our construction of Bk+1 we just need to show that if ¬θk+1 is not
consistent with Bk then it is consistent with Ck. Suppose not, then both
Bk ∪ {¬θk+1} and Ck ∪ {¬θk+1} are inconsistent. In the sequel, to derive
a contradiction, we adopt the proof in [16, Lemma 19] for the multi-agent
setting .

Let U = Bk\Z, V = Ck\Z, U = {θ | ¬θ ∈ U}, and V = {θ | ¬θ ∈ V }.
Note that U, V, U, V are all finite and each formula in V is not consistent
with Bk due to the construction of Bk.

We claim: there exist ψ1, . . . , ψl, ψ
′
1, . . . , ψ

′
m, ψ′′1 , . . . , ψ

′′
r ∈ {ψ | Kiψ ∈ s}

such that
(i) ` ψ1 ∧ · · · ∧ ψl ∧ φ ∧

∧
U → θk+1,

(ii) ` ψ′1 ∧ · · · ∧ ψ′m ∧ φ ∧
∧
V → θk+1,

(iii) ` ψ′′1 ∧ · · · ∧ ψ′′r ∧ φ ∧
∧
U →

∧
V.

(i) and (ii) are immediate from the inconsistency of Bk ∪ {¬θk+1} and
Ck ∪ {¬θk+1}. For (iii), first recall that for any θ ∈ V , {¬θ} ∪ Bk is incon-
sistent due to the construction of Bk. Therefore for each θ ∈ V there exist
χ1, . . . , χh ∈ {ψ | Kiψ ∈ s} such that:

` (χ1 ∧ · · · ∧ χh ∧ φ ∧
∧
U)→ θ

Since V is a finite set, we can collect all such χ for each θ ∈ V to obtain (iii).
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From (i)− (iii), NECK, DISTK, RE and the fact that

Kiψ1, . . . ,Kiψl,Kiψ
′
1, . . . ,Kiψ

′
m,Kiψ

′′
1 , . . . ,Kiψ

′′
n ∈ s,

we can show the following:

(iv) Ki((φ ∧
∧
U)→ θk+1) ∈ s,

(v) Ki((φ ∧
∧
V )→ θk+1) ∈ s,

(vi) Ki((φ ∧
∧
U)→

∧
V ) ∈ s.

In the following, we will show that K̂i(θk+1 ∧
∧
V ) ∈ s. First we claim

K̂i(φ∧
∧
U) ∈ s. Suppose not, then Ki¬(φ∧

∧
U) ∈ s, thus ¬(φ∧

∧
U) ∈ Bk.

Due to the construction of Bk we know φ and U are in Bk, thus Bk is
inconsistent, contradicting the assumption. Therefore K̂i(φ ∧

∧
U) ∈ s thus

by (iv), (vi) we have K̂i(θk+1 ∧
∧
V ) ∈ s.

By our assumption, for any θ ∈ V ∪ {θk+1} we have Kvi(θ, d) ∈ s. Now
based on this fact and K̂i(θk+1 ∧

∧
V ) ∈ s, we can use Proposition 2.2, and

obtain the following:

(vii) Kvi(θk+1 ∨
∨
V, d) ∈ s.

Now using ` ¬
∧
V ↔

∨
V , let us change the from of (v) to the following:

(v′) Ki(φ→ (
∨
V ∨ θk+1)) ∈ s,

Based on (v′), (vii) and DISTKvr, we have Kvi(φ, d) ∈ s, contradiction.
Therefore, Bk+1 and Ck+1 are consistent and this concludes the the inductive
proof.

In sum, B and C are consistent thus can be extended into Γ1 and Γ2 satisfying
(a′) and (b). 2

Clearly, (a′) in Proposition 3.10 implies (a) in Proposition 3.9, then
Lemma 3.8 is immediate.

Now we are ready to prove the truth lemma:

Lemma 3.11 (Truth Lemma) For any φ ∈ ELKvr and s ∈ Sc, φ ∈ s iff
Mc, s � φ.

Proof We only show the non-trivial cases of Kiψ and Kvi(ψ, d).

• φ = Kiψ: If Kiψ ∈ s, then for any t such that s ∼ci t we have ψ ∈ t by
the definition of ∼ci . Now by induction hypothesis (IH), Mc, s � Kiψ. Now
suppose Kiψ /∈ s, then by Lemma 3.7 and the IH, we have Mc, s � ¬Kiψ.

• φ = Kvi(ψ, d): Suppose that Kvi(ψ, d) ∈ s, s ∼ci t, s ∼ci t′, ψ ∈ t and ψ ∈ t′.
It is easy to see that Kvi(ψ, d) ∈ t∩ t′ and gt(i) = gt′(i) = gs(i). Since ψ ∈ t
and ψ ∈ t′, according to condition (iii) and the fact that gt(i) = gt′(i):

VD(d, t) = ft(d) = gt(i, ψ, d) = gs(i, ψ, d) = gt′(i, ψ, d) = ft′(d) = VD(d, t′).

Now suppose Kvi(ψ, d) 6∈ s then by Lemma 3.8 and IH, Mc, s � ¬Kvi(ψ, d).
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2

From the above truth lemma, the completeness theorem almost follows. The
only missing piece is to show for each maximal consistent set there is indeed
at least one corresponding state in Mc.

Lemma 3.12 For every maximal consistent set Γ, there exist f and g such
that 〈Γ, f, g〉 ∈ Sc.
Proof The construction is very similar to the one in the proof of Proposi-
tion 3.5, though simpler. The only essential difference is the definition of g0,
thus the proofs related to g0 need to be adapted.

Let x be a natural number, and let T = {〈j, φ, d〉 | Kvj(φ, d) ∧ φ ∈ Γ, j ∈
I, φ ∈ ELKvr, d ∈ D}. 6 Let g0 : T → N ∪ {?} be the constant function such
that g0(j, φ, d) = x for all the triples in T . We define f as the constant function
such that f(d) = x for all d ∈ D. Now redefine ∆ as the set of the remaining
triples:

∆ = {〈j, φ, d〉 | φ ∧Kvj(φ, d) 6∈ Γ, j ∈ I, φ ∈ ELKvr, d ∈ D}.

As before, we can enumerate ∆ and build gk+1 by adding the new 〈j, φ, d〉 /∈
Dom(gk) into the domain (where Λk is defined as before w.r.t. the new ∆):

gk+1(j, φ, d) =



? if K̂jφ ∧Kvj(φ, d) 6∈ Γ

gk(j, ψ, d) if K̂jφ ∧Kvj(φ, d) ∈ Γ and there are
χ, ψ such that 〈j, ψ, d〉 ∈ Dom(gk)
and the following formulas are all

in Γ : K̂j(χ ∧ φ), K̂j(χ ∧ ψ),
Kvj(ψ, d), Kvj(χ, d)

max(Λk ∪ {f(d)}) + 1 if otherwise

Similar to the corresponding proof of Proposition 3.5, we can show that the
second clause in the above definition of gk+1 is well-defined (k = 0 case is now
obvious due to the definition of g0).

Now let g =
⋃
k∈N g

k, we need to verify conditions (i), (ii) and (iii). Condi-
tion (iii) is immediate from the definition of f .

For condition (i), if 〈j, φ, d〉 ∈ Dom(g0) = T , then g0(j, φ, d) = x 6= ?, and
we can see that Kvj(φ, d)∧ K̂jφ ∈ Γ since Kvj(φ, d)∧ φ ∈ Γ. Thus we have for

any 〈j, φ, d〉 ∈ Dom(g0), g0(j, φ, d) 6= ? iff Kvj(φ, d) ∧ K̂jφ ∈ Γ. The inductive
case is obvious by the three clauses of gk+1.

For condition (ii), suppose that g(j, φ, d) 6= ? and g(j, ψ, d) 6= ?, we need
to prove claim (◦) inductively as before. For that, we only need to revise the
proof for the base case as follows:

Suppose k = 0 and thus both 〈j, φ, d〉 and 〈j, ψ, d〉 are in Dom(g0). By
definition of g0, it is easy to see that g(j, φ, d) = g0(j, φ, d) = x = g0(j, ψ, d) =
g(j, ψ, d). Moreover, we have φ ∧ Kvj(φ, d) ∈ Γ and ψ ∧ Kvj(ψ, d) ∈ Γ. Then

6 Note that T may be empty. In that case we start from the empty function g0.
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setting χ = φ gives us Kvj(χ, d) ∧ K̂j(φ ∧ χ) ∧ K̂j(ψ ∧ χ) ∈ Γ. Then for any
〈j, φ, d〉 and 〈j, ψ, d〉 in Dom(g0), g0(j, φ, d) = g0(j, ψ, d) iff there exists a χ
such that {Kvj(χ, d), K̂j(φ ∧ χ), K̂j(ψ ∧ χ)} ⊆ Γ.

In sum, 〈Γ, f, g〉 ∈ Sc. 2

Based on Lemma 3.12 and Lemma 3.11 we can show the completeness.

Theorem 3.13 ELKVr is sound and strongly complete for multi-agent
ELKvr.

Proof The soundness part can be found in [16, Theorem 11]. For the com-
pleteness part, we show that each consistent set of ELKvr formulas is sat-
isfiable. Given a consistent set ∆ of ELKvr formulas, by the Lindenbaum
Lemma for the countable language ELKvr, there exists a maximal consistent
set Γ such that ∆ ⊆ Γ. Now Lemma 3.12 tells us that there exist f, g such
that 〈Γ, f, g〉 ∈ Sc. From Lemma 3.11, it follows that Mc, 〈Γ, f, g〉 � Γ thus
Mc, 〈Γ, f, g〉 � ∆. 2

In [16], we also discussed the logic of ELKvr extended with public an-
nouncement operators (call it PALKvr):

φ ::= > | p | ¬φ | φ ∧ φ | Kiφ | 〈φ〉φ

As an immediate corollary of the above completeness theorem and Theorem
10 in [16], we can axiomatize multi-agent PALKvr by adding the following
reduction axioms to ELKVr (call the resulting system PALKVr):

!ATOM 〈ψ〉p↔ (ψ ∧ p)
!NEG 〈ψ〉¬φ↔ (ψ ∧ ¬〈ψ〉φ)
!CON 〈ψ〉(φ ∧ χ)↔ (〈ψ〉φ ∧ 〈ψ〉χ)
!K 〈ψ〉Kiφ↔ (ψ ∧Ki(ψ → 〈ψ〉φ))
!Kvr 〈φ〉Kvi(ψ, d)↔ (φ ∧Kvi(〈φ〉ψ, d))

Corollary 3.14 PALKVr is sound and complete for multi-agent PALKvr.

4 Future work

In this paper, we showed that ELKVr is sound and complete for multi-agent
ELKvr (over S5 frames). This is just a starting point of an unfolding story
about interesting modal fragments of first-order intensional logic.

For future work, the decidability of ELKvr deserves a careful investigation.
The single-agent case is particularly promising, since we do have a neat canon-
ical model construction which only uses two copies of each maximal consistent
set, which may facilitate a finite filtration leading to to the small model prop-
erty. On the other hand, there are also hints for the undecidablity, for example,
in [3], it is shown that the quantifier-free fragment of S5-FOIL is undecidable,
where arbitrary relation symbols and arbitrary predicate abstractions are al-
lowed. Of course we may study the logic of ELKvr on other weaker frame
classes, where decidability is more plausible according to [3].

Another natural question to ask is how to axiomatize the logic where Kvi
are the only primitive operators (call it PLKvr). In ELKVr, most of the
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axioms involve interactions between “knowing that” and “knowing what”. We
are unsure if the system without these axioms can axiomatize PLKvr, though
it is unlikely.

As motivated in the introduction, ELKvr can be used in a security setting
where the interaction between “knowing what” and “knowing that” is import-
ant. To really handle epistemic reasoning in such scenarios, we need to express
statements like “I know that the message I just received is indeed the private
message that I sent before for authentication”, where equality is inevitable.
Due to our completeness proof method, we suspect that adding the equality
symbol (between d ∈ D) freely in ELKvr may in turn ease the axiomatization,
since we have a better grip on the information we need in the canonical model.

Last but not least, on the philosophical side, the conditional versions of
other types of knowledge should be studied, probably in the context of relev-
ant alternative theory [2], since they may capture the common sense use of
knowledge better.
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