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Abstract

We provide a simple, sound, complete and terminating tableau decision procedure
for the temporal logic of until and since over the real numbers model of time. This
logic is an important basis for reasoning about concurrency, metric constraints and
planning. Despite its usefulness and long history, there are no existing implementable
reasoning techniques for it.
The tableau uses a mosaic-based technique to translate the satisfiability problem into
a question about the way that intervals of a real-flowed model relate to each other. It
builds on top of recently developed reasoning tools for general linear time by applying
some interesting but computationally simple checks.
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1 Introduction

Although discrete time temporal logics are the most common, there has been a
separate thread of steady development of continuous time alternatives since the
earliest beginnings. Being able to reason about events and processes unfold-
ing continuously has an enormous range of applications from concurrency and
refinement in reactive systems, as a basis for the metric temporal logics used
for model checking automated systems, to artificial planning, natural language
semantics and philosophical arguments.

In this paper we investigate the most natural and useful such temporal logic:
RTL, the propositional temporal logic over real-numbers time using the Until
and Since connectives introduced in [6]. RTL is as expressive as first-order
logics over linear structures [6]. It is decidable [2,10,8] (in PSPACE) and has
complete axioms systems [5,9].

Currently there is no satisfiability or validity checking procedure for RTL
that looks remotely amenable to implementation. In this paper we build on
the results and techniques of [10] and present what seems to be an intuitive
tableau style decision procedure for RTL which will not be hard to implement
(albeit only to work with sufficiently small formulas).

1 mark.reynolds@uwa.edu.au partially supported by ARC
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The proof of correctness here uses the mosaics which were used to prove
PSPACE decidability of RTL in [10]. Mosaics are small pieces of a model. We
can decide whether a finite set of mosaics is sufficient to be used to build a
real-numbers model of a given formula by considering something like a game
tree which can also be viewed as a tableau. Such an idea was suggested for
general dense time reasoning in [11] and those ideas have led to recent tableaux
[12] and more streamlined implementations [1].

Narrowing our focus to the reals, we have to look carefully at shapes of
sub-graphs within the tree to enforce the peculiar properties of the reals: such
as density, Dedekind completeness and separability.

The contribution here is presenting a sound and complete mosaic-based
tableau system to decide satisfiability in RTL. We aim mainly to show clearly
how mosaics can be the building blocks of a tableau with this logic here: the
system is not at all streamlined and is intended to provide the foundation of
more intelligent tableau construction techniques in future work.

Below we define the logic RTL in section 2, explain mosaics in section 3,
show how to make a sufficient set of mosaics in section 4, lay out the basic
mosaic tableau in section 5, adjust it for the case of the reals flow in Section 6,
soundness in Section 7 and prove completeness in Section 8. Section 9 has a
quick overview of complexity and implementation issues.

2 The logic

Fix a countable set L of atoms. Here, frames (T,<), or flows of time, will be
irreflexive linear orders. Structures T = (T,<, h) will have a frame (T,<) and
a valuation h for the atoms, i.e. for each atom p ∈ L, h(p) ⊆ T . Of particular
importance will be real structures T = (R, <, h), which have the real numbers
flow (with their usual irreflexive linear ordering).

The language L(U, S) is generated by the 2-place connectives U and S along
with classical ¬ and ∧. That is, we define the set of formulas recursively to
contain the atoms and for formulas α and β we include ¬α, α∧β, U(α, β) and
S(α, β).

Each formula is evaluated at a point in a structure T = (T,<, h). We write
T, x |= α when α is true at the point x ∈ T . This is defined recursively as
follows. Suppose that we have defined the truth of formulas α and β at all
points of T. See Figure 1 for the semantics.

Common temporal abbreviations are: Fα = U(α,>), “α will be true (some-
time in the future)”; Gα = ¬F (¬α), “α will always hold (in the future)”; and
their mirror images P and H. Particularly for dense time applications we also
have: C+α = U(>, α), “α will be constantly true for a while after now”; and
K+α = ¬C+¬α, “α will be true arbitrarily soon”. They have mirror images
C− and K−.

A formula φ is R-satisfiable if it has a real model: i.e. there is a real
structure S = (R, <, h) and x ∈ R such that S, x |= φ. A formula is R-valid iff
it is true at all points of all real structures. Of course, a formula is R-valid iff
its negation is not R-satisfiable. We will refer to the logic of L(U,S) over real
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For all points x:
T, x |= p iff x ∈ h(p), for p atomic;
T, x |= ¬α iff T, x 6|= α;
T, x |= α ∧ β iff both T, x |= α and T, x |= β;
T, x |= U(α, β) iff there is y > x in T such that T, y |= α and for all z ∈ T

such that x < z < y, we have T, z |= β; and
T, x |= S(α, β) iff there is y < x in T such that T, y |= α and for all z ∈ T

such that y < z < x, we have T, z |= β.

Fig. 1. Sematics

structures as RTL.
Let RTL-SAT be the problem of deciding whether a given formula of L(U, S)

is R-satisfiable or not. [10] proves:

Theorem 2.1 RTL-SAT is PSPACE-complete.

3 Mosaics for U and S

Each mosaic is a syntactic object intended to represent a small piece, or interval,
of a model, i.e. sets of formulas for a pair of points indicating which formulas
are true there and in between in the whole model. There will be coherence
conditions on the mosaic which are necessary for it to be part of a larger
model. Full details, definitions and proofs can be found in [10].

Our mosaics will only be concerned with a finite set of formulas:

Definition 3.1 For each formula φ, define the closure of φ to be Clφ = {ψ,¬ψ |
ψ ≤ φ} where χ ≤ ψ means that χ is a subformula of ψ.

We can think of Clφ as being closed under negation: we treat ¬¬α as if it
was α.

Often we will intend that a set of formulas will be exactly the set of formulas
which hold at a particular point in a model. Such a set should at least be
consistent in terms of classical propositional logic:

Definition 3.2 Suppose φ ∈ L(U, S) and S ⊆ Clφ. Say S is propositionally
consistent (PC) iff there is no substitution instance of a tautology of classical
propositional logic of the form ¬(α1 ∧ ... ∧ αn) with each αi ∈ S. Say S is
maximally propositionally consistent (MPC) iff S is maximal in being a subset
of Clφ which is PC.

We will define a mosaic to be a triple (A,B,C) of sets of formulas. The
intuition is that this corresponds to two points from a structure: A is the set of
formulas (from Clφ) true at the earlier point, C is the set true at the later point
and B is the set of formulas which hold at all points strictly in between. Look
ahead to definition 3.12 to see how mosaics can be found in a real structure.

Definition 3.3 Suppose φ is from L(U, S). A φ-mosaic is a triple (A,B,C) of
subsets of Clφ such that:

C0. A and C are maximally propositionally consistent,
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and the following four coherency conditions hold:
C1. if ¬U(α, β) ∈ A and β ∈ B then we have both:

C1.1. ¬α ∈ C and either ¬β ∈ C or
¬U(α, β) ∈ C; and
C1.2. ¬α ∈ B and ¬U(α, β) ∈ B.

C2. if U(α, β) ∈ A and ¬α ∈ B then we have both:
C2.1 either α ∈ C or both β ∈ C and
U(α, β) ∈ C; and
C2.2. β ∈ B and U(α, β) ∈ B.

C3-4 mirror images of C1-C2.

Definition 3.4 If m = (A,B,C) is a mosaic then start(m) = A is its start,
cover(m) = B is its cover and end(m) = C is its end.

If we start to build a model using mosaics as building blocks then we may
realise that the inclusion of one mosaic necessitates the inclusion of others:
defects need curing.

Definition 3.5 A defect in a mosaic (A,B,C) is either types 1, 2 or 3:

1. a formula U(α, β) ∈ A with either
1.1 β 6∈ B,
1.2 (α 6∈ C and β 6∈ C), or
1.3 (α 6∈ C and U(α, β) 6∈ C);

2. mirror image for S;
3. a formula β ∈ Clφ with ¬β 6∈ B.

We will need to string mosaics together to build linear orders. This can
only be done under certain conditions. We introduce the idea of composition
of mosaics and present some results which are straightforward to prove.

Definition 3.6 We say that φ-mosaics (A′, B′, C ′) and (A′′, B′′, C ′′) compose
iff C ′ = A′′. In that case, their composition is (A′, B′ ∩ C ′ ∩B′′, C ′′).
Lemma 3.7 If mosaics m and m′ compose then their composition is a mosaic.

Lemma 3.8 Composition of mosaics is associative.

Thus we can talk of sequences of mosaics composing and then find their
composition. We define the composition of a sequence of length one to be just
the mosaic itself and we leave the composition of an empty sequence undefined.
Write σ = 〈m1,m2, ...,mn〉 for a sequence and σ∧τ for the concatenation of
two sequences.

Definition 3.9 A decomposition for a mosaic m is any finite sequence
〈m1, ...,mn〉 of mosaics which composes to m.

It will be useful to introduce an idea of fullness of decompositions. This is
intended to be a decomposition which provides witnesses to the cure of every
defect in the decomposed mosaic.

Definition 3.10 The decomposition above is full iff the following three con-
ditions all hold:
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1. for all U(α, β) ∈ A we have
1.1. β ∈ B and either (β ∈ C and U(α, β) ∈ C) or α ∈ C,
1.2. or there is some i with 1 ≤ i < n such that α ∈ Ci,

β ∈ Bj (all j ≤ i) and β ∈ Cj (all j < i);
2. the mirror image of 1.; and
3. for each β ∈ Clφ such that ¬β 6∈ B there is some i

such that 1 ≤ i < n and β ∈ Ci.

If 1.2 above holds in the case that U(α, β) ∈ A is a type 1 defect in (A,B,C)
then we say that a cure for the defect is witnessed (in the decomposition) by the
end of (Ai, Bi, Ci) (or equivalently by the start of (Ai+1, Bi+1, Ci+1)). Similarly
for the mirror image for S(α, β) ∈ C. If β ∈ Ci is a type 3 defect in (A,B,C)
then we also say that a cure for this defect is witnessed (in the decomposition)
by the end of (Ai, Bi, Ci). If a cure for any defect is witnessed then we say that
the defect is cured.

Lemma 3.11 If 〈m1, ...,mn〉 is a full decomposition of m, then every defect
in m is cured in the decomposition.

For the reals we do not allow full decompositions of length one, although
they are allowed in general linear time contexts for mosaics with no defects.

In the rest of this section we define a notion of satisfiability for mosaics and
relate the satisfiability of formulas (which is our ultimate interest) to that of
mosaics.

Because mosaics represent linear orders with end points, it is inconvenient
for us to continue to work directly with R and because we want to make use
of some simple tricks with convergence of sequences in the metric at several
places in the proof, we will move to work in the unit interval [0, 1] instead.

If x < y from R then let ]x, y[ denote the open interval {z ∈ R | x < z < y}
and [x, y] denote the closed interval {z ∈ R | x ≤ z ≤ y}. Similarly for half
open intervals.

One can get a mosaic (you can check it is a mosaic) from any two points in
a structure.

Definition 3.12 If T = (T,<, h) is a structure and φ a formula then for each
x < y from T we define mosφT(x, y) = (A,B,C) where:

A = {α ∈ Clφ | T, x |= α},
B = {β ∈ Clφ | for all z ∈ T, if x < z < y then T, z |= β}, and
C = {γ ∈ Clφ | T, y |= γ}.

We will now relate the satisfiability of a formula φ to that of certain mosaics.
Obviously, a formula will be satisfiable over the reals iff it is satisfiable over the
]0, 1[ flow. Furthermore, this happens iff a relativized version of the formula
is satisfiable somewhere in the interior of a model over [0, 1]. To define this
relativization we need to use a new atom to indicate points in the interior.
Hence the next few definitions.
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Definition 3.13 Given φ and an atom q which does not appear in φ, we define
a map ∗ = ∗φq on formulas in Clφ recursively: ∗p = p ∧ q, ∗¬α = ¬(∗α) ∧ q,
∗(α ∧ β) = ∗(α) ∧ ∗(β) ∧ q, ∗U(α, β) = U(∗α, ∗β) ∧ q, and similarly S.

With the relativization machinery we can then define a relativized mosaic
to be one which could correspond to the whole of a [0, 1] structure in which q
is true of exactly the interior ]0, 1[ and the interior is a model of φ.

Definition 3.14 We say that a ∗φq (φ)-mosaic (A,B,C) is (φ, q)-relativized iff

1. ¬q is in A and C, no S(α, β) is in A, no U(α, β) in C; and
2. q ∈ B and ¬ ∗φq (φ) 6∈ B.

Here we confirm that φ is satisfiable over the reals exactly when we can find
such a relativized mosaic.

Lemma 3.15 (Lemma 29 from [10]) Suppose that φ is a formula of
L(U, S) and q is an atom not appearing in φ. Then φ is R-satisfiable iff there
is a (φ, q)-relativized ∗φq (φ)-mosaic satisfied on the whole of [0, 1].

Our satisfiability procedure in [10] was to guess a relativized mosaic
(A,B,C) and then check that (A,B,C) is satisfied on the whole of [0, 1]. Thus
we now turn to the question of deciding whether a relativized mosaic is satis-
fiable.

4 Real Mosaic Systems

In this section we define a concept of a collection or system of mosaics in which
each member is decomposable in terms of simpler members. We will later show
that being in such a system is (roughly) equivalent to satisfiability. First two
of the simpler tactics for decomposition.

4.1 Tactics Lead and Trail

The mirror image tactics lead and trail allow mosaics which can be fully de-
composed in terms of themselves along with some other mosaics. In a game
setting this is a legitimate way for the game to be won: the player who has
to keep providing full decompositions can keep supplying a full decomposition
〈m〉∧σ for m if the other player keeps choosing m to be decomposed. The tactic
trail corresponds to an operation in [7] for building a new linear order from a
simpler one by laying ω copies of it one after the other towards the future. The
tactic lead corresponds to laying the copies towards the past.

Definition 4.1 Suppose φ ∈ L(U, S), m is a φ-mosaic and σ is a non-empty
sequence of φ-mosaics. Then, we say that m is fully decomposed by the tac-
tic lead(σ) iff 〈m〉∧σ is a full decomposition of m. We say that m is fully
decomposed by the tactic trail(σ) iff σ∧〈m〉 is a full decomposition of m.

4.2 Shuffles

The term shuffle has been used in the literature (see, for example, [7], [2] or
[14]) to refer to certain methods of constructing a linear structure (often a
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monadic one) from a thorough mixture of copies of members of a finite set of
other linear structures.

Suppose that (T1, ..., Tn) are linear structures. A shuffle of the Ti is any
linear order made from intervals which are each copies of one of the Ti such
that between any two of the intervals lies a copy of each of the Ti. To be
precise,

Definition 4.2 Suppose that (T1, <1), ..., (Tn, <n) are linear structures.
(K,<K) is a shuffle of T = {(Ti, <i) | i = 1, ..., n} iff there is a linear or-
der (B,<B) and a map π : B → {1, ..., n} such that

• K =
⋃
b∈B{(b, t) | t ∈ Tπ(b)} and

• for all b, b′ ∈ B, for all t ∈ Tπ(b), for all t′ ∈ Tπ(b′), (b, t) <K (b′, t′) iff either
b <B b′ or b = b′ and t <π(b) t

′, and

• if b <B b′ then for all i ∈ {1, ..., n} there is b′′ ∈ B such that b <B b′′ <B b′

and π(b′′) = i.

The intention here is similar except we need to deal with mosaics corre-
sponding to linear structures instead of structures themselves. We consider
(a mosaic corresponding to) a shuffle S of linear structures U0, U1, . . . , Us,
V1, V2, . . . , Vr where each Ui is a singleton structure and each Vi is a non-
singleton structure consisting of the concatenation of a finite sequence of (one
or more) mosaics representing other structures. Thus, we actually only con-
sider an MPC set Pi instead of Ui and a non-empty composing sequence λi of
mosaics instead of Vi. In this case it is possible to construct a certain set of
mosaics such that one, o, corresponds to S and each one in the set has a full de-
composition in terms of others in the set and/or the mosaics which decompose
each λi.

In [10], in this vein, there is a rather complex definition of when a mosaic
o is fully decomposed by the tactic shuffle (〈P0, . . . , Ps〉, 〈λ1, . . . , λr〉). See Def-
inition 31 of that paper. We will not repeat it here to save space and also to
save the reader effort.

Instead we present a slightly shorter alternative characterisation that also
appeared (and was proved equivalent) in that paper.

The forward K(m) property is supposed to hold of an MPC set if that
set could be the end of the last mosaic in some λi where mosaic m is fully
decomposed by the tactic shuffle (〈P0, . . . , Ps〉, 〈λ1, . . . , λr〉). This is the set of
formulas from Cl(φ) true at the end point of one of the structures Vi referred
to above.

Definition 4.3 (Definition 32 from [10]) Suppose φ ∈ L(U, S) and m is a φ-
mosaic. We say that a set Q ⊆ Clφ satisfies the forward K(m) property iff Q
is MPC and for any U(α, β) ∈ Clφ we have U(α, β) ∈ Q iff both β ∈ cover(m)
and (at least) one of the following holds:

K1 ¬α 6∈ cover(m);
K2 α ∈ end(m); or
K3 β ∈ end(m) and U(α, β) ∈ end(m).
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The mirror image is the backwards K(m) property.

Lemma 4.4 (Lemma 33 from [10]) Suppose φ ∈ L(U, S), m = (A,B,C) is
a φ-mosaic, and each Pi ⊆ Clφ (0 ≤ i ≤ s) and each λi (1 ≤ i ≤ r) is a
composing non-empty sequence of φ-mosaics.

Then, m is fully decomposed by the tactic shuffle (〈P0, . . . , Ps〉, 〈λ1, . . . , λr〉)
iff the following seven conditions hold:

S0 B is a subset of each Pi and of the start, end and
cover of each mosaic in each λi;

S1 each Pi satisfies both the forward and backwards
K(m) property;

S2 the start of the first mosaic in each λi satisfies the
backwards K(m) property;

S3 the end of the last mosaic in each λi satisfies the
forwards K(m) property;

S4 A satisfies the forward K(m) property;
S5 C satisfies the backwards K(m) property;
S6 if β ∈ Clφ but ¬β 6∈ B then either β is contained in

some Pi or β is contained in the start or end of some
mosaic in some λi.

Note that as s ≥ 0 there is at least one Pi involved in the shuffle. This
corresponds to a one point structure. In a general linear order setting we could
define a shuffle with no Pis (provided that then r > 0) but over the reals it
turns out to be crucial to require at least one Pi. This is because, as it is not
too hard to see, a shuffle of only non-singleton closed intervals of the reals can
not be both Dedekind complete and separable (i.e. having a countable dense
suborder).

4.3 The levels that make an RMS

Now we define the hierarchy of membership of the system of mosaics which
we need. Mosaics at one level of membership will be constructed from ones at
lower levels of membership by concatenation or some combination of the tactics
we have introduced above. As we build up, we only want to allow a limited
use of leads and trails before a shuffle takes us to the next highest level. As
we will only allow nesting of trails and/or leads of depth 2 within shuffles we
define some intermediate levels between levels n and n + 1. So, as we will see
now, the levels, in increasing order are actually 0, 0+, 1−, 1, 1+, 2−, 2, 2+, ....

Definition 4.5 For φ ∈ L(U, S), suppose S is a set of φ-mosaics and n ≥ 0.
A φ-mosaic m ∈ S is a level n+ member of S iff m is the composition of a

sequence of mosaics, each of them being either a level n member of S or fully
decomposed by the tactics lead(σ) or trail(σ) with each mosaic in σ being a
level n member of S.

A φ-mosaic m ∈ S is a level (n+ 1)− member of S iff m is the composition
of a sequence of mosaics, each of them being either a level n+ member of S or
fully decomposed by the tactics lead(σ) or trail(σ) with each mosaic in σ being
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a level n+ member of S.
A φ-mosaic m ∈ S is a level n member of S iff m is the composition of a

sequence of mosaics with each of them being either a level n− member of S or a
mosaic which is fully decomposed by the tactic shuffle(〈P0, ..., Ps〉, 〈σ1, ..., σr〉)
with each mosaic in each σi being a level n− member of S.

Note that it is generally possible for mosaics to be level 0 members of some S
provided that they are compositions of mosaics which can be fully decomposed
by shuffles in which there are no sequences (i.e. r = 0). Thus these mosaics
will have an interior which is a dense mixture of points where P0, ..., Ps hold.
These are the only mosaics which can be level 0 members of any S.

Also note that if m is a level n member of S then m is the composition of
〈m〉 so m is clearly a level n+ member of S. Similarly, level n+ implies level
(n+ 1)− and level n− implies level n.

Finally, note that the set S in the definition above may not be closed under
composition. It is even possible that a mosaic is a member of S at a certain
level by virtue of being a composition of other mosaics each of which, although
being fully decomposed by tactics involving only members of S, is not itself a
members of S. Later we will see that for our purposes we mostly work with
sets S which are closed under composition.

Definition 4.6 For φ ∈ L(U, S), a real mosaic system (RMS) of φ-mosaics is
a set S of φ-mosaics such that, for every m ∈ S, there exists some n such that
m is a level n member of S. For any n, we say that S is a real mosaic system
of depth n iff every m ∈ S is a level n member of S.

Theorem 4.7 (Theorem 75 in [10]) Suppose φ is a formula of L(U, S) and
q is an atom not appearing in φ. Suppose ψ = ∗φq (φ) has length N .

Then the following are equivalent:
1. φ is R-satisfiable;
2. there is a (φ, q)-relativized ψ-mosaic which appears in some RMS.

5 Tableaux

In this section we see how the mosaics and RMS machinery can be the basis of a
tableau-style decision procedure. We will start with a formula φ and determine
whether φ is satisfiable in RTL or not.

The tableaux we construct will be roughly tree-shaped, albeit the traditional
upside down tree with a root at the top: predecessors and ancestors above,
successors and descendants below. They can be thought of as structures for
organising and representing iterative full decompositions in the RMS.

We imagine trees growing downwards from the root. A node may have
children immediately below it, every node except the root has a unique parent.
Each node itself and its parent and the parent’s parent and the parent’s parent’s
parent etc. form the set of ancestors of the node. We will also impose an earlier-
later relation between siblings (children of the same parent) on some trees and
represent it by left-to-right ordering in diagrams.

Here are the basic definitions.
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Definition 5.1
1. A tree here is just a set (of nodes), with a successor relation determining (as
its transitive closure) a derived, reflexive, anti-symmetric, transitive, ancestor
relation such that the set of ancestors of any node is finite and well-ordered
(by the ancestor relation) and there is a unique root with no ancestors (apart
from itself).

2. If node x has a successor y then we say that x is the parent of y (it is
unique) and y is a child of x. Any other child of x is called a sibling of y. A
node with no children will be called a leaf node.

3. The depth of a node with n ancestors is n.
4. An ordered tree is a tree with finite numbers of children for each node

and a left-right relation which totally orders siblings. The left-right relation
does not relate non-siblings.

5. A φ-mosaic labelled tree is a map from nodes of a tree to φ-mosaics.

The idea, as we will see, is that the labels of the children of a node form a
full decomposition for the label of the node.

Definition 5.2 A (φ-) tableau (for φ-mosaic m) is a φ-mosaic labelled ordered
tree with root labelled by m; and each node having the labels on the children
nodes taken in order forming a full decomposition of the label on the node.

Definition 5.3 Define a leaf node to be a clone iff it has the same label as
one of its other ancestors. Define a complete node of a tableau to be either a
non-leaf, or a clone leaf node. Define a successful tableau as one in which all
nodes are complete (otherwise the tableau is incomplete).

As an example see the successful U(p, q)-tableau in Figure 2. The three
sets of formulas appearing are: A = {p, q, U(p, q)}, B = {¬p, q, U(p, q)} and
C = {p,¬q, U(p, q)}.

Definition 5.4 Suppose that φ is a formula of L(U, S) and q is an atom not
appearing in φ. Say ψ = ∗φq (φ). A ψ-tableau is a tableau for φ iff the root is

labelled by a (φ, q)-relativized ∗φq (φ)-mosaic.

6 The Reals

The mosaic tableaux of the last section were quite simple and quite general
but they are not adequate for the special properties of the reals. Thus, in
this section we define a R-tableau to be a type of mosaic tableau. However,
we impose some subtle restrictions on the labelling as we travel around the
tree. They are essentially simple graph-theoretic properties of the labels on the
decomposition tree.

First, we specify that in an R-tableau we do not allow tableau nodes with
a single child. Mosaics which have singleton sequences of themselves as full
decompositions, are possible in general linear time, they are called units, but
not allowed in the reals.
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Fig. 2. A successful U(p, q)-tableau

6.1 Approval of the labels

Next we need some machinery to enable the other properties to be defined
properly. Assume ψ ∈ L(U, S) and suppose that T is a successful tableau of
ψ-mosaics.

In order to determine whether T is a successful R-tableau we will define
an iterative process of approving individual mosaics in the tree. We approve
the mosaic labels themselves regardless of how many times a particular label
appears in the tableau. Once it is approved, it is approved everywhere that it
appears.

The simplest criterion for approval is that a parent label can be approved
whenever all the labels of its child nodes are approved. There are a couple of
other ways to gain approval that we will outline below.

If, after some iterations, the root label in the tableau is approved then the
tableau is a successful R-tableau.

If at some stage there are no applicable rules to approve any more nodes,
and the root mosaic remains unapproved then the tableau has failed to be a
R-tableau. We can terminate the check.

6.2 Trails and Leads

The following pattern in the tableau corresponds to a lead tactic and allows
the mosaic m to be approved. Suppose m = m0 is decomposed as 〈m1〉∧σ0
in T , i.e. m is the label of a parent node and 〈m1〉∧σ0 are the labels of the
children in order. Suppose further that for all i = 1, 2, ..., mi is decomposed as
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Fig. 3. Approval as a lead

〈mi+1〉∧σi in T . Suppose that all the mosaics appearing in each σi are already
approved.

Finally suppose that some mi = m.
Then we can approve m. We say that we approve m as a lead. See Figure 3

for an example of a sub-tree which leads to the approval of a mosaic as a lead.
Similarly we can approve mosaics as trails if we have a looping sequence of

decompositions all ending in the mi.

6.3 Shuffles

The pattern to allow approval of a mosaic as a shuffle is a little bit more
complicated to describe and identify. It can involve a set of more than one (as
yet) unapproved mosaic labels.

Because the covers of mosaics in decompositions are supersets of the cover
of the parent, if there is a sequence u = m0,m1, ...,mn = v of mosaics in
respective decompositions such that each mi is fully decomposed (somewhere
in T ) as σi

∧〈mi+1〉∧πi then the cover of v is a superset of the cover of u.
The conditions for approving a mosaic as a shuffle are SH1-SH6 as set out

below. Consider the mosaic m appearing as a label in a tableau.
(SH1) m is an unapproved mosaic.
(SH2) Every unapproved (label of a) descendent of (a node labelled by) m,

including m itself, has some descendent which has at least two separate child
nodes labelled by unapproved mosaics.

(SH3) All descendants of m which are unapproved have the same cover as
m.

(SH4) is the requirement that every unapproved descendent u of m (includ-
ing m itself) has a “crisp start”. That is, there is a sequence u = m0,m1, ... of
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Fig. 4. Almost a shuffle

unapproved mosaics in respective decompositions as follows. Each mi is fully
decomposed as σi

∧〈mi+1〉∧πi where each mosaic in σi is approved already (and
we do not care what the πi are). We require that mi = mj for some i < j and
further, we require that for each k = i, i+ 1, ..., j − 1, σk is actually empty.

We will see below that this condition allows us to identify a start of a
possible shuffle involving u.

Similarly, (SH5), we require the unapproved descendants of m to have crisp
ends using the mirror image construction.

The last check (SH6) before we approve m as a shuffle is to find an unap-
proved descendent u of m such that u has two adjacent children with unap-
proved labels v and w that further satisfy the following pattern.

We have a sequence v = m0,m1, ... of unapproved mosaics in respective
decompositions as follows. Each mi is fully decomposed as σi

∧〈mi+1〉 where
σi is any (even perhaps empty) sequence of any mosaics, approved or not.
However, note that mi+1 is always the last mosaic in the decompositions for
each mi. We also have mi = mj for some i < j.

The mirror image condition is required of w.
In this case it is easy to see that the end of v will be the same as the start of

w. SH6 corresponds to making sure that there is a point structure taking part
in the shuffle, a condition which we have seen ensures Dedekind completeness.

If SH1-6 hold then we can be sure that the shuffle is acceptable and we can
approve m as a shuffle.

In Figure 4 there is a sub-tree which almost allows m to be approved as a
shuffle except that condition SH6 is not established.

In Figure 5, however, m can be approved as a shuffle: condition SH6 is
established with m′ and m′′ witnesses.

6.4 R-tableau by approval

This concludes our account of the approval process that defines a successful
R-tableau.
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Fig. 5. Approved as a shuffle

Definition 6.1 A successful tableau is a successful R-tableau iff all mosaic
labels can be approved according to the iterative process above.

As an example, we find that the tableau in Figure 2 is a successful R-
tableau. The mosaic (B,B,B) can be approved as a shuffle, then (A,B,B)
and (B,B,C) separately as a lead and trail, then (A,B,C) because its two
children are approved.

The main work here is mostly in the appendices (see below). Then we
can put the soundness and completeness lemmas together and get our desired
overall theorem.

Theorem 6.2 L(U, S) formula φ is R-satisfiable iff φ has a successful R-
tableau.

7 Soundness

In [10], we define a concept of realization intended to capture the idea of a mo-
saic being satisfiable (over the reals) as far as internal information is concerned:
i.e. we ignore formulas of the form U(α, β) in the end or S(α, β) in the start.
To do so we generalise the idea of the semantic valuation function— the map
which maps a time point to the set of formulas true then— to a more general
class of functions (realization maps) which only have some of their properties.
This is [10], definition 39:

Definition 7.1 Suppose that x < y from [0, 1]. We say that φ-mosaic m is
realized by the map µ on the closed interval [x, y] iff the following conditions
all hold:

R1. for each z ∈ [x, y], µ(z) is a maximally propositionally
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consistent subset of Clφ;
R2. Suppose z ∈ [x, y[. Then U(α, β) ∈ µ(z) iff either

R2.1, there is u such that z < u ≤ y and α ∈ µ(u) and
for all v, if z < v < u then β ∈ µ(v) or

R2.2, β ∈ µ(y), U(α, β) ∈ µ(y) and
for all v, if z < v < y, then β ∈ µ(v);

R3. the mirror image of R2 for S(α, β);
R4. µ(x) is the start of m;
R5. µ(y) is the end of m; and
R6. for each β ∈ Clφ, β is in the cover of m iff for all u,

if x < u < y, β ∈ µ(u).

A mosaic m is said to be realized on [x, y] iff there exists a map µ such
that m is realized on [x, y] by µ. Say mosaic m is realised in [0, 1] iff for all
x < y from [0, 1], there is µ such that m is realised by µ on [x, y]. Say that m
is realised iff it is realised on [0, 1].

Consider the mosaic corresponding to an interval in a structure in the sense
of definition 3.12. It should be clear that this mosaic is realized by the semantic
valuation function for formulas at points within the interval, i.e. the semantic
valuation function is a type of realization map.

Some lemmas from [10]:

Lemma 7.2 (Lemma 41 from [10]) Suppose ψ is a L(U, S) formula, and
ψ-mosaic m is the composition of m′ and m′′ with each of m′ and m′′ being
realised.

Then m is realised.

Lemma 7.3 (Lemma 42 from [10]) Suppose ψ is a L(U, S) formula, ψ-
mosaic m is fully decomposed by the tactic lead σ (and similarly trail) and
each mosaic in σ is realised. Then m is realised.

Lemma 7.4 (Lemma 44 from [10]) Suppose ψ is a L(U, S) formula, ψ-
mosaic m is fully decomposed by the tactic shuffle (〈P0, ..., Ps〉, 〈λ1, ..., λr〉) and
each mosaic in each λi is realised. Then m is realised.

7.1 Approval Implies Realised

In the next few lemmas we show that approval in a R-tableau implies being
realised.

Lemma 7.5 Suppose ψ is a L(U, S) formula and ψ-mosaic m is approved in
a R-tableau because its children are approved. Then m is realised.

Proof. By Lemma 7.2. 2

Lemma 7.6 Suppose ψ is a L(U, S) formula and ψ-mosaic m is approved in
a R-tableau as a lead. Then m is realised. Similarly trail.

Proof. By Lemma 7.3. 2
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7.2 Shuffle

The final possibility is that m is approved as a shuffle. Thus we have SH1-6 as
follows.

(SH1) m is an unapproved mosaic.
(SH2) Every unapproved (label of a) descendent of (a node labelled by) m,

including m itself, has some descendent which has at least two separate child
nodes labelled by unapproved mosaics.

(SH3) All descendants of m which are unapproved have the same cover as
m.

(SH4) is the “crisp start” requirement that we outlined above. Thus, there is
a sequence u = m0,m1, ... of unapproved mosaics in respective decompositions
as follows. Each mi is fully decomposed as σi

∧〈mi+1〉∧πi where each mosaic
in σi is approved already. We have mi = mj for some i < j such that for each
k = i, i+ 1, ..., j − 1, σk is empty.

Now some useful terminology when dealing with SH4. We have let σi be
the (possibly empty) sequence of approved mosaics in the decomposition of mi

before mi+1 appears. We put pre(u) = σ0
∧σ1

∧...∧σi−1 which ay be empty.
Similarly, (SH5), we require the unapproved descendants of m to have crisp

ends using the mirror image construction.
Call the corresponding sequence post(u).
The last check (SH6) before we approved m as a shuffle was to find an

unapproved descendent u of m such that u has two adjacent children with
unapproved labels v and w that further satisfy the following pattern.

We have a sequence v = m0,m1, ... of unapproved mosaics in respective
decompositions as follows. Each mi is fully decomposed as σi

∧〈mi+1〉 and
mi = mj for some i < j. Note that in that case post(v) is empty. The mirror
image condition applied to w and we have pre(w) empty as well with the end
of v being the same as the start of w.

All the above (SH1-6) were checked before we approved m.
Let K be the set of unapproved mosaics v below m.
We claim that this set defines a shuffle as follows. We define a new set Σ

of mosaics and point-structures, i.e. MCS subsets from Cl(φ).
Suppose w ∈ K and choose a full decomposition F (w) = 〈v1, ..., vk〉 of w

from the tree with vi ∈ K, vj ∈ K and vk 6∈ K for all i < k < j, for some i 6= j.
Say that σ is the possibly empty sequence of mosaics vi+1, vi+2, ..., vj−1. For all
such w, i, j, we include in Σ a mosaic or point-structure corresponding to the
composition of post(vi)

∧σ∧pre(vj) if that is non-empty, or a point structure
being the start of vj otherwise.

Note that by the shuffle restriction SH6 on R-tableaux, there will be at least
one such point structure in Σ.

If we look at a decompositions of m that are deep enough below m then we
can find one of the form pre(m)∧π∧post(m). Just keep decomposing mosaics
at the start and end.

Let s be the composition of π. By SH3 and SH2, s will have cover the same
as m. In fact we will have the following: start(s) is the end of pre(m) (or the
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start of m if pre(m) is empty); cover(s) is the cover of m; and end(s) is the
start of post(m) (or the ned of m if post(m) is empty).

We can also show that s is fully decomposed by the tactic shuffle (〈Σ0〉, 〈Σ′〉)
where Σ0 is the sequence of point-structures in Σ in any order and Σ′ is the
rest of Σ in any order.

To do so we use Lemma 4.4. Say m = (A,B,C), Σ0 = 〈P0, ..., Ps〉 and
Σ′ = 〈λ1, ..., λr〉.

S0) B is a subset of each Pi and of the start, end and cover of each mosaic
in each λi. S0 holds as each point and each mosaic appears as a descendent of
m which has cover B.

S1) each Pi satisfies both the forward and backwards K(m) property. S1
holds as each element of Σ0 is the start of a B cover mosaic.

Consider why Pi′ was put in Σ. There was w ∈ K with a full decomposition
F (w) = 〈v1, ..., vk〉 of w from the tree with vi ∈ K, vj ∈ K and vk 6∈ K for all
i < k < j, for some i 6= j. The sequence vi+1, vi+2, ..., vj−1 is empty so that
j = i+1. We include in Σ the point-structure Pi′ when post(vi), σ and pre(vj)
are all empty. In that case the end of vi and the start of vj are the same, and
that is Pi′ .

For post(vi) to be empty, there is a sequence vi = m0,m1, ... of unapproved
mosaics in respective decompositions as follows. Each mk is fully decomposed
as πk

∧〈mk+1〉. Suppose ml = mj for some l < j.
Thus ml is fully decomposed as πl

∧〈ml+1〉 and vi is the composition of
π0
∧〈m1〉 which is he composition of π0

∧π1
∧〈m2〉, etc which is the composition

of π0
∧π1

∧...∧πk−1〈mk〉.
Thus the end of vi and the end of mk are the same.
By noting that the cover of mk+1, the last mosaic in the full decomposition

πl
∧〈ml+1〉 for mk, has the same cover as m, we can deduce that the end of mk

satisfies the backward K(m) condition as required.
S2) the start of the first mosaic in each λi satisfies the backwards K(m)

property. S2 holds as the first mosaic starts with the end of B mosaic.
Ditto S3. S3) the end of the last mosaic in each λi satisfies the forwards

K(m) property.
S4) A satisfies the forward K(m) property. S4 holds as A starts the mosaic

which starts the shuffle.
Similarly S5. S5) C satisfies the backwards K(m) property.
S6) if β ∈ Clφ but ¬β 6∈ B then either β is contained in some Pi or β is

contained in the start or end of some mosaic in some λi. S6 holds as each B
mosaic gets fully decomposed and therefore there is a witness to each such β
in one of the sequences that we put together to get Σ.

Recall that m is just the composition of pre(m)∧s∧post(m) and so is realised
as well.

In this subsection we have proved the following.

Lemma 7.7 Suppose ψ is a L(U, S) formula and ψ-mosaic m is approved in
a R-tableau as a shuffle. Then m is realised.
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7.3 Putting it all together

Now the main new lemma.

Lemma 7.8 Suppose ψ is a L(U, S) formula and ψ-mosaic m is approved in
a R-tableau. Then m is realised.

Proof. We show by induction on the order of approving mosaic labels in a
successful R-tableau that all such mosaics are realised. Suppose that all mosaics
so far approved are realised. Now suppose that ψ-mosaic m appears in a
successful tableau T and gets approved.

There are four ways that m can get approved and we consider them case
by case.

The simplest way that m is approved is when it labels a node and all the
children nodes are approved. In this case we know that m is the composition
of the child mosaic labels and all of those are realisable. Then m is approved
by Lemma 7.5.

Another possibility is that m is approved as a lead. Use lemma 7.6 and we
are done.

Similarly trail and shuffle (Lemma 7.7). 2

Lemma 7.9 Suppose φ is a L(U, S) formula, not containing the atom q and
ψ = ∗φq (φ). Say that there is a successful tableau for the ψ-mosaic m and it is
(φ, q)-relativized.

Then m is satisfied in a structure on the whole of [0, 1].

Proof. By Lemma 7.8, as m appears in a successful tableau then there is µ
such that m is realised by µ on [0, 1].

As m is (φ, q)-relativized, m is satisfied in a structure on the whole of [0, 1].2

Lemma 7.10 If L(U, S) formula φ has a successful R-tableau then φ is R-
satisfiable.

Proof. Suppose L(U, S) formula φ has a successful tableau.
Then there is an atom q not appearing in φ and ψ = ∗φq (φ) and ψ-mosaic

m that is (φ, q)-relativized and has a successful tableau. It is the root of the
tableau.

By Lemma 7.9, m is satisfied in a structure on the whole of [0, 1].
By Lemma 3.15, m, φ has a R-flowed model. 2

8 Completeness

Showing that satisfiable formulas have successful tableaux is not too hard when
we can use the levels of an RMS and the way that we can use leads, trails
and shuffles to get to the next level. In [10] it was quite clear that these
operations correspond to simple repetitive patterns in a decomposition tree.
They translate directly to good behaviour in tableaux.

For example, if m is fully decomposed by tactic lead applied to the sequence
σ of mosaics at lower levels, then m has a tableau starting with a root with
children m and then the mosaics in σ in order. There will be no central sticks
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because of the way leads and trails are defined. An induction takes care of the
lower level σ mosaics and we are done.

Lemma 8.1 Suppose ψ is a formula of L(U, S), ψ-mosaic m is fully decom-
posed by the tactic lead σ (or trail) and each mosaic in σ has a successful
R-tableau in which m does not appear.

Then m has a successful R-tableau.

Equally, a shuffle tells us about a set of mutual decompositions which end up
leaving a tableau with only lower level mosaics. See Definition 31, page 16/17 of
[10]. The R-tableau conditions can be checked directly on these decompositions.

Lemma 8.2 Suppose ψ is a formula of L(U, S), ψ-mosaic m is fully decom-
posed by the tactic shuffle (〈P0, ..., Ps〉, 〈λ1, ..., λr〉) and each mosaic in each λi
has a successful R-tableau in which m does not appear.

Then m has a successful R-tableau.

Put these two lemmas together in an induction and we get:

Lemma 8.3 Suppose ψ is a formula of L(U, S) and ψ-mosaic m appears in
an RMS. Then m is the root of a successful R-tableau.

Then use the relativisation results to translate from mosaics to formulas:

Lemma 8.4 If L(U, S) formula φ is R-satisfiable then φ has a successful R-
tableau.

9 Termination, Complexity and Implementation Issues

It is easy to see that because we can, without loss of generality, stop at clone
nodes, and limit branching factors, only a finite number of different tableaux
need be considered for a formula. However, that is the end of the good news.
There is an exponential bound on the number of different mosaics for a formula
(in terms of its length). This also bounds the length of branches in a tableau.
With a linear bound on the branching factor (—the defects need to be cured and
any mosaics in between can be composed—) we thus have a double exponential
bound on the size of any tableau in terms of number of nodes. There is thus
a triple exponential bound on the number of tableaux which would govern the
complexity of any exhaustive search through the tableaux.

However, by guessing a tableau of double exponential size we have a decision
procedure that runs in 2-NEXPTIME.

Lemma 9.1 In terms of the length of the input formula φ, there is a finite
triple exponential bound on the number of tableaux for φ. A decision procedure
runs in 2-NEXPTIME.

The complexity of reasoning using such tableaux is thus 2-NEXPTIME.
In future work (joint with others) we will report on the possibilities for

implementation of this technique. Early Java implementations [12] of a mosaic
tableau for the logic US/LIN of L(U, S) over general linear time show that any
direct implementation of this tableau technique is quickly overwhelmed by the
multi-exponential blow-up in data structures. The number of mosaics for a
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formula is a particular problem if they all need to be generated and checked.
Clearly, more intelligent techniques are needed to make practical use of this
basic framework. Our latest work [1] uses a notion of partial mosaics for the
US/LIN case shows that there is great potential for speed-ups in practice.

Note that an implementation of the tableau reasoner for RTL would need
two parts. First there is the tableau of mosaic decompositions which has a
similar task to that of the US/LIN tableau in [12,1]. The second part is a
much less computationally complex check through the successful tableau for
the graph restrictions corresponding to approval.
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