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Abstract

We consider modal logics of products of neighborhood frames and find the modal
logic of all products of normal neighborhood frames.
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1 Introduction

In this paper we continue the research of [5] and study modal logics of products
of neighborhood frames.

Neighborhood frames, as a generalization of Kripke semantics for modal
logic, were introduced independently by Dana Scott [9] and Richard Montague
[7]. Neighborhood semantics is more general than Kripke semantics, and in
case of normal reflexive and transitive logics, coincides with topological seman-
tics. In this paper we consider the product of neighborhood frames introduced
by Sano in [8]. It is a generalization of the product of topological spaces 2

presented in [1].
The product of neighborhood frames is defined in the vein of the product

of Kripke frames (see [11] and [12]). But there are some differences. Axioms of
commutativity and Church-Rosser property are valid in any product of Kripke
frames. Whereas in [1] it was shown that the logic of the products of all
topological spaces is the fusion of logics S4∗S4. Even more, S4∗S4 is complete
w.r.t. the product Q×tQ (×t stands for product of topological spaces, defined
in [1]).

In [5] this result was extended. It was proven that for any pair L and
L′ of logics from set {S4,D4,D,T} modal logic of products of L-neighborhood
frames and L′-neighborhood frames is the fusion of L and L′. But it was unclear
how to proceed in case of logics that do not contain axiom ♦> (correspond to
seriality). In this paper we show that any product of neighborhood frames in

1 This work was supported by RFBR grant N 14-01-31442-mol-a.
2 “Product of topological spaces” is a well-known notion in Topology but it is different from
what we use here (for details see [1]).
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fact satisfy axiom ψ → 22ψ, where ψ is a variable-free and 22-free formula
(and similar for 21). We prove that K∗K plus all such axioms will be the logic
of all products of neighborhood frames.

Neighborhood frames are often considered in the context of non-normal
modal logics, since, unlike Kripke semantics, it is complete w.r.t. many non-
normal logics. As for normal modal logic, neighborhood frames rarely gives
anything new in comparison to Kripke frames. This paper, however, shows
that normal neighborhood frames, that correspond to normal modal logics,
give different results than Kripke frames in case of products.

The results of this paper (and others: [1], [5], [8]) show that “neighborhood”
product, in general, gives weaker logic than “Kripke” product of modal logics.
From this we can conclude that neighborhood semantics is a finer tool for
products of modal logics even for normal modal logics. It also shows that
notion of the product of modal logics depend on the semantics.

We should also mention the possibility of adding the third modality that, in
topological context, correspond to classical product topology. That was done
in [1] for S4 and topological semantics with the interior operator and in [6]
for D4 and topological semantics with the derivational operator. It may be
possible to consider similar construction for other logics.

2 Language and logics

In this paper we study propositional modal logics. A formula is defined recur-
sively as follows:

φ ::= p | ⊥ | φ→ φ | 2iφ,

where p ∈ PROP is a propositional letter and 2i is a modal operator. Other
connectives are introduced as abbreviations: classical connectives are expressed
through ⊥ and →, dual modal operators 3i are expressed as follows: 3i =
¬2i¬.

Definition 2.1 A normal modal logic (or a logic, for short) is a set of modal

formulae closed under Substitution
(
A(pi)
A(B)

)
, Modus Ponens

(
A,A→B

B

)
and

Generalization rules
(

A
2iA

)
; containing all classic tautologies and the following

axioms:
2i(p→ q)→ (2ip→ 2iq).

Kn denotes the minimal normal modal logic with n modalities and K = K1.

Let L be a logic and let Γ be a set of formulae, then L + Γ denotes the
minimal logic containing L and Γ. If Γ = {A}, then we write L+A rather than
L + {A}.
Definition 2.2 Formula φ is called closed if it does not contain any variables.

Definition 2.3 Let L1 and L2 be two modal logics with one modality 2, then
fusion of these logics is

L1 ∗ L2 = K2 + L′1 + L′2;
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where L′i is the set of all formulae from Li where all 2 are replaced by 2i.

3 Products of neighborhood frames

The notions of Kripke frames and Kripke models are well known (see [2]).

Definition 3.1 Let R ⊆W ×W be a relation on W 6= ∅, then for k ≥ 1 and
w ∈W we define

R0 = IdW ;

Rn+1 = Rn ◦R;

R∗ =

∞⋃
k=0

Rk;

R(w) = {u |wRu} .

For a Kripke frame F = (W,R) we define the submodel generated by w ∈W
as the frame Fw = (W ′, R|W ′), where W ′ = R∗(w) and R|W ′ = R ∩W ′ ×W ′.
Definition 3.2 Let Fi = (Wi, Ri) (i = 1, 2) be two Kripke frames. We define
their product (see [4]) as a bimodal frame F1×F2 = (W1×W2, R

h
1 , R

v
2), where

(x, y)Rh1 (z, t) ⇐⇒ xR1z & y = t,

(x, y)Rv2(z, t) ⇐⇒ yR2t & x = z.

Furthermore, we consider neighborhood frames (see [10] and [3]).

Definition 3.3 Let X be a nonempty set, then F ⊆ 2X is a filter on X if

(i) X ∈ F ;

(ii) if U, V ∈ F , then U ∩ V ∈ F ;

(iii) if U ∈ F and U ⊆ V , then V ∈ F .

Note, it is usually demanded that ∅ /∈ F (F is a proper filter), but in this
paper we will not demand this.

Definition 3.4 A (normal) neighborhood frame (or an n-frame) is a pair X =

(X, τ), where X is a nonempty set and τ : X → 22X

such that τ(x) is a filter
on X for any x. We call function τ the neighborhood function of X and sets
from τ(x) we call neighborhoods of x. The neighborhood model (n-model) is a
pair (X, θ), where X = (X, τ) is an n-frame and θ : PROP → 2X is a valuation.
In a similar way, we define neighborhood 2-frame (n-2-frame) as (X, τ1, τ2) such
that τi(x) is a filter on X for any x, and a n-2-model.

Definition 3.5 The valuation of a formula ϕ at a point of an n-model M =
(X, θ) is defined by induction. For Boolean connectives the definition is usual,
so we omit it. For modalities the definition is as follows:

M,x |= 2iψ ⇐⇒ ∃θ ∈ τi(x)∀y ∈ θ(M,y |= ψ).



376 Neighbourhood Frame Product KxK

Formula is valid in an n-model M if it is valid at all points of M (notation
M |= ϕ). Formula is valid in an n-frame X if it is valid in all models based on
X (notation X |= ϕ). We write X |= L if for any ϕ ∈ L, X |= ϕ. Logic of a
class of n-frames C as Log(C) = {ϕ |X |= ϕ for all X ∈ C}. For logic L we also
define nV (L) = {X |X is an n-frame and X |= L}. Note, that if there is no X
such that X |= L, then nV (L) = ∅.

Definition 3.6 Let F = (W,R) be a Kripke frame. We define n-frameN (F ) =
(W, τ) in the following way

τ(w) = {U |R(w) ⊆ U ⊆W} .
Lemma 3.7 Let F = (W,R) be a Kripke frame. Then

Log(N (F )) = Log(F ).

The proof is straightforward (see [3]).

Definition 3.8 Let X = (X, τ1, . . .) and Y = (Y, σ1, . . .) be n-frames. Then
function f : X → Y is a p-morphism if

(i) f is surjective;

(ii) for any x ∈ X and U ∈ τi(x) f(U) ∈ σi(f(x));

(iii) for any x ∈ X and V ∈ σi(f(x)) there exists U ∈ τi(x) such that
f(U) ⊆ V .

In notation f : X � Y.

Remark 3.9 According to Lemma 3.7, a Kripke frame is a particular case of
a neighborhood frame. There is a notion of p-morphism for Kripke frames.
It is easy to check that for any two Kripke frames F and G function f is a
p-morphism from F to G iff f is a p-morphism from N (F ) to N (G). So, p-
morphism for n-frames is a natural generalization of p-morphism for Kripke
frames.

Lemma 3.10 Let X = (X, τ1, . . .), Y = (Y, σ1, . . .) be n-frames and f : X � Y.
Let θ′ be a valuation on Y. We define θ(p) = f−1(θ′(p)). Then

X, θ, x |= ϕ ⇐⇒ Y, θ′, f(x) |= ϕ.

The proof is by standard induction on the length of formula ϕ.

Corollary 3.11 If f : X � Y, then Log(X) ⊆ Log(Y).

Definition 3.12 Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then
the product of these n-frames is an n-2-frame defined as follows:

X1 × X2 = (X1 ×X2, τ
′
1, τ
′
2),

τ ′1(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
τ ′2(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)} .

Note that for normal n-frames X1 and X2 their product X1 × X2 is also
normal.
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Definition 3.13 For two unimodal logics L1 and L2, so that nV (L1) 6= ∅ and
nV (L2) 6= ∅, we define n-product of them as follows:

L1 ×n L2 = Log({X1 × X2 |X1 ∈ nV (L1) & X2 ∈ nV (L2)}).

If we forget about one of its neighborhood functions, say τ ′2, then X1 × X2

will be a disjoint union of L1 n-frames. Hence,

Proposition 3.14 ([8]) For two unimodal normal logics L1 and L2

L1 ∗ L2 ⊆ L1 ×n L2.

From [5] we know that n-product of any two logics from set {S4,D4,D,T}
equals to the fusion of corresponding logics. But this is not the case for K.

Proposition 3.15 K×n K 6= K ∗ K.

Proof. Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames and X1 × X2 =
(X1 ×X2, τ

′
1, τ
′
2). Consider formula 21⊥ → 2221⊥. Since this formula has no

variables the truth of this formula does not depend on the valuation. So

X1 × X2, (x, y) |= 21⊥ ⇐⇒ ∅ ∈ τ ′1(x, y) ⇐⇒
∅ ∈ τ1(x) ⇐⇒ ∀y′ ∈ X2 (∅ ∈ τ ′1(x, y′)) ⇐⇒

∀y′ ∈ X2 (X1 × X2, (x, y
′) |= 21⊥) =⇒ X1 × X2, (x, y) |= 2221⊥.

Hence, X1 × X2 |= 21⊥ → 2221⊥. 2

Moreover,

Lemma 3.16 For any two n-frames X1 and X2 1) if φ is a closed formula
without 22, then for any two n-frames X1 and X2

X1 × X2 |= φ→ 22φ,

2) if φ is a closed formula without 21, then

X1 × X2 |= φ→ 21φ.

Proof. We prove only 1) because 2) can be proved analogously. Since φ does
not contain neither 22, nor variables, its value does not depend on the second
coordinate. Let F = X1 × X2. So if F, (x, y) |= φ, then ∀y′(F, (x, y′) |= φ),
hence, F, (x, y) |= 22φ. 2

We put

∆ = {φ→ 22φ |φ is closed and 22-free}∪{ψ → 21ψ |ψ is closed and 21-free} .

Definition 3.17 For two unimodal logics L1 and L2, we define

〈L1, L2〉 = L1 ∗ L2 + ∆.
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From Lemma 3.16 and Proposition 3.14 follows:

Proposition 3.18 For any two normal modal logics L1 and L2 〈L1, L2〉 ⊆
L1 ×n L2.

Corollary 3.19 〈K,K〉 ⊆ K×n K.

The rest of the paper is dedicated to proving the converse inclusion.

4 Weak product of Kripke frames

In order to prove completeness of 〈K,K〉 w.r.t. n-frames, we first establish
completeness w.r.t. special kind of Kripke frames. For this purpose we use
“weak product” of Kripke frames which basically is the result of unraveling
(c.f. [2]) of the usual product of two Kripke frames.

Definition 4.1 Let G = (W,R1, R2) = Gw0 be a 2-modal Kripke frame with
root w0. A path in G is a tuple δ = w0Ri1w1 . . . Rikwk, so that for any j > 0
wj−1Rijwj . Path δ is called an (n,m)-path if set {j | ij = 1} has no more than
n elements and set {j | ij = 2} has no more than m elements.

Definition 4.2 Let F1 and F2 be two Kripke frames with roots x0 and y0

respectively. A path in the product F1 ×F2 is a sequence of the following type

(x0, y0)S1(x1, y1)S2 . . . Sn(xn, yn),

where Si ∈
{
Rh1 , R

v
2

}
and for any i ≤ n (xi−1, yi−1)Si(xi, yi) holds.

Let P(F1 × F2) be the set of all paths in F1 × F2.
We define relations on P(F1 × F2) in the following way: for any two paths

α and β

αR′1β ⇐⇒ β = αRh1 (a, b)

αR′2β ⇐⇒ β = αRv2(a, b)

We will call the following Kripke frame weak product of F1 and F2

〈F1, F2〉 = (P(F1 × F2), R′1, R
′
2).

Lemma 4.3 For any two Kripke frames F1 and F2 〈F1, F2〉 |= ∆.

Proof. Let φ → 22φ ∈ ∆, i.e. φ is closed, 22-free and α |= φ. Since φ is
variable-free and 22-free, its truth in 〈F1, F2〉 depends only on the structure of
frame G1

α = (W1 ×W2, R
′
1)α = (R′1

∗
(α), R′1|R′1∗(α)).

Due to the construction of 〈F1, F2〉 for any β, so that αR′2β, G1
β is isomor-

phic to G1
α, so β |= φ and, hence, α |= 22φ.

Similarly, we prove that 〈F1, F2〉 |= ψ → 21ψ for any closed 21-free formula
ψ. 2

The aim of this section is to prove the following theorem:

Theorem 4.4 Logic 〈K,K〉 is complete with respect to the class of all weak
products of Kripke frames.
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In order to prove this theorem, we introduce some notions and construc-
tions.

From here on in this section we rewrite all formulae using only ♦ instead
of 2.

Definition 4.5 For a modal formula ψ, we define its modal depth d(ψ) as
follows:

d(⊥) = d(p) = 0;

d(ψ1 → ψ2) = max(d(ψ1), d(ψ2));

d(♦ψ) = d(ψ) + 1.

Let Σ be a consistent set of closed 1-modal formulae maximal up to depth
n. We define frame F(Σ, n) of depth n by induction:

Base:

F(Σ, 0) = ({•} ,∅) — an irreflexive one-point frame.

Step: assume that F(Ω, n) is defined for any maximal up to depth n set of
closed formulae Ω; and Σ is maximal up to depth n+ 1 set of closed formulae.

Let On be the set of all maximal consistent sets of closed formulae of depth
not greater than n. Note that there are only finitely many nonequivalent closed
formulae of depth not greater than n. Let Ω ∈ On, since Ω is finite, then we
can define

ζΩ = ♦(
∧

Ω).

Note that d(ζΩ) ≤ n+ 1 and due to maximality of Σ either ζΩ ∈ Σ or ¬ζΩ ∈ Σ.
Let F 0

Ω = F(Ω, n) and F iΩ be a copy of F 0
Ω for each i ∈ N.

Definition 4.6 Let G0 = (W0, R0), G1 = (W1, R1), . . . be a finite or infinite
set of Kripke frames, so that all Wi are disjoint. Then by H = (•) +

⊔
Gi we

define Kripke frame H = (V, S) in the following way:

V = {r} ∪
⋃
Wi,

S =
(
{r} ×

⋃
Wi

)
∪
⋃
Ri.

Now we can define F(Σ, n+ 1)

F(Σ, n+ 1) = (•) +
⊔
ζΩ∈Σ

⊔
i∈N

F iΩ.

Definition 4.7 A Kripke frame F = (W,R) is called tree with root r, if for
any point w ∈ W , w 6= r, there is only one immediate predecessor and r has
no predecessors.

Using standard unraveling method (see [2]) one can prove

Lemma 4.8 For any countable Kripke frame F there exists a countable tree
G such that G� F .
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Let G be a tree of depth not greater than n. For w ∈ G we define

Σn(w) = {ψ |ψ is closed, d(ψ) ≤ n and G,w |= ψ} .

Note, that here we can write G,w |= ψ (without valuation) because ψ is
closed and does not depend on the valuation.

Lemma 4.9 Let G be a countable tree, then for any w ∈ G there exists f :
F(Σn(w), n) � Gwdn. Where Gwdn is the subframe of Gw, so that all points
of depth greater than n are eliminated.

Proof.
We construct f by induction.
Let I be the set of all successors of w. We split I into classes I =

⋃
Ij , so

that for any j and any u, u′ ∈ Ij Σn−1(u) = Σn−1(u′). For each Ij . For each j
we fix a surjective map hj : N→ Ij .

Remember, that

F(Σn(w), n) = (•) +
⊔

ζΩ∈Σn(w)

⊔
i∈N

F iΩ, where (•) = ({r} ,∅). (1)

We put
f(r) = w. (2)

By induction for each j and i ∈ N there exists

gj,i : F iΣn−1(hj(i)) � Ghj(i)d(n− 1).

For each Ω, so that ζΩ ∈ Σn(w), there exist u ∈ Ij such that Ω = Σn−1(u),
and there exists i such that hj(i) = u. So for any x ∈ F iΩ we put

f(x) = gj,i(x). (3)

Thus, (2) and (3) define f completely. Now we need to show that f is
indeed a p-morphism. Let (V, S) be the frame from (1).

(i) Surjectiveness of f is obvious.

(ii) Let xSy and x 6= r, then f(x)Rf(y) because for corresponding i and j gj,i
is a p-morphism.

Now assume that x = rSy, then y ∈ Ij for some j and f(y) is a successor
of w.

(iii) For x 6= r it follows from the fact that all gj,i are p-morphisms.
Assume that x = r and f(r) = wRu, then u ∈ Ij for some j, and there

exist an i such that hj(i) = u. Hence, for the root r′ of frame F iΣn−1(hj(i))

f(r′) = u and rSr′.
2

Lemma 4.10 If φ /∈ K, then there is a set of closed formulae Σ such that
F(Σ, d(φ)) 6|= φ.
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Proof. It is well-known that logic K has countable (even finite) model property
(see [2]). By Lemma 4.8 there is a countable tree G = (W,R) with root w0, so
that G, θ, w0 |= ¬φ for some valuation θ.

Since the truth of φ depends only on points of depth not greater than
n = d(φ) then Gdn, θ|Gdn, w0 |= ¬φ. Let Σ = Σn(w0). Σ is obviously a maximal
consistent set of closed formulae up to depth n. By Lemma 4.9 F(Σ, n) � Gdn.
Hence, F(Σ, n) 6|= φ. 2

Corollary 4.11 Logic K is complete with respect to the following class of
frames: {F(Σ, n) |Σ ∈ On, n ∈ N}.

Let us go back to proving Theorem 4.4. We define ♦1-depth d♦1 and ♦2-
depth d♦2

for any 2-modal formula:

d♦i(⊥) = d♦i(p) = 0; d♦i(ψ1 → ψ2) = max(d♦i(ψ1), d♦i(ψ2));

d♦1
(♦1ψ) = d♦1

(ψ) + 1; d♦2
(♦1ψ) = d♦2

(ψ);

d♦1
(♦2ψ) = d♦1

(ψ); d♦2
(♦2ψ) = d♦2

(ψ) + 1;

for any i ∈ {1, 2}.
Since the standard translation of a closed formula produces a first-order

condition on frames, 〈K,K〉 is ∆-elementary. Therefore, by [4, Prop. 5.4],
〈K,K〉 is complete with respect to its countable rooted Kripke frames.

Assume that φ /∈ 〈K,K〉, then for a countable rooted Kripke frame F with
root r and valuation θ, F, θ, r |= ¬φ. By Lemma 4.8 there is a 2-modal tree G
such that G 6|= φ.

For a 2-modal tree G = (W,R1, R2) with root w0 and w ∈W , we define

Σ1
n(w) = {ψ |ψ is closed and 22-free, d(ψ) ≤ n and w |= ψ} ;

Σ2
n(w) = {ψ |ψ is closed and 21-free, d(ψ) ≤ n and w |= ψ} .

Let F1 = F(Σ1
n(w), n) = (V1, S1), F2 = F(Σ2

m(w),m) = (V2, S2), where
n = d♦1

(φ) and m = d♦2
(φ). Then

Definition 4.12 Tree G = (W,R1, R2) is called an (n,m)-tree with root w0 if
any point in W can be accessed from w0 with an (n,m)-path.

Lemma 4.13 Let G be an (n,m)-tree with root w0, then there exist two uni-
modal frames F1, F2 and a p-morphism f : 〈F1, F2〉� G.

Proof. We will use induction on n + m. Let r1 be the root of F1 and r2 be
the root of F2. We define

f(r1, r2) = w0.

Let H1
w = (R∗1(w), R1|R∗1(w)) and H2

w = (R∗2(w), R2|R∗2(w)). By Lemma 4.9

there are g1 : F1 � H1
w0

and g2 : F2 � H2
w0

.
Consider a path α in F1 × F2 (an element of 〈F1, F2〉). There are two

possibilities:
1) α = (r1, r2)S′1(u, r2) . . . = (r1, r2)S′1γ and r1S1u, g1(u) = x.
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By induction, there is a p-morphism

hu = 〈F(Σ1
n−1(x), n− 1),F(Σ2

m(x),m)〉� Gx.

Note that Σ1
n−1(x) = Σn−1(u). Let us show that Σ2

m(x) = Σ2
m(w0).

Indeed, if ψ ∈ Σ2
m(w0), then w0 |= ψ, but by Lemma 4.3 w0 |= 21ψ. Since

w0R1x, then x |= ψ. So Σ2
m(w0) ⊆ Σ2

m(x) and, due to maximality, they are
actually equal.

Therefore, cone of 〈F1, F2〉 with root in (u, r2) is isomorphic to
〈F(Σ1

n−1(x), n− 1),F(Σ2
m(x),m)〉. Let t be this isomorphism.

We put
f(α) = hu(t(α)).

2) α = (r1, r2)S′2(r1, v) . . . = (r1, r2)S′2γ and r2S2v, g2(v) = y.
By induction, there is a p-morphism

h′v = 〈F(Σ1
n(y), n),F(Σ2

m−1(y),m− 1)〉� Gy.

Similar to the previous case, there is an isomorphism

t′ : 〈F(Σ1
n(y), n),F(Σ2

m−1(y),m− 1)〉 → 〈F1, F2〉(r1,v).

So, we put
f(α) = h′v(t

′(α)).

Let us check that f is p-morphism also by induction:

Surjectiveness. Take any y ∈ G(n,m). If y = w0, then its preimage is (r1, r2).
Assume that y 6= w0, then there is an (n,m)-path δ = w0Rkx . . . y in G(n,m).
Without loss of generality, we assume that k = 1 (case k = 2 is similar). By
the construction, there exists u such that f(u, r2) = x. Path η = x . . . y is
an (n − 1,m)-path, so that δ = w0Rkη. hu is surjective, hence there is a
hu-preimage of η and corresponding f -preimage of δ.

Monotonisity. Assume that δ and η are related in 〈F1, F2〉 via the 1st rela-
tion, i.e. η = δS′1(v1, v2). If δ 6= (r1, r2), then monotonisity follows from
monotonisity of hu.

If δ = (r1, r2), then η = (r1, r2)S′1(v1, r2). By construction, f(δ) = w0,
f(η) = g1(v1) and w0R1g1(v1).

For S′2 the argument is the same.

Lifting. Assume that f(δ)R1y. Since G is a tree, then there is only one pre-
decessor of y, that is f(δ). If f(δ) 6= w0, then f(δ) = hu(t(δ)) for some
u. Since hu is a p-morphism, then there exists γ such that hu(γ) = y and
t−1(γ) = δS′1(v1, v2).

If f(δ) = w0, then g1(u) = y for some u. So η = (r1, r2)S′1(u, r2) satisfies
the lifting condition.

2

To finish the proof of Theorem 4.4, note that G(m,n) 6|= φ and by Lemma
4.13 there are F1 and F2 such that 〈F1, F2〉 6|= φ.
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5 Completeness theorem

In this section we explain how, given two Kripke frames F1 and F2, to construct
n-frames X1 and X2, so that X1 × X2 � N (〈F1, F2〉). This is only possible if
points in X1 and X2 do not have minimal neighborhoods or, in other words,
each point should have arbitrary small neighborhoods. Because, otherwise, n-
frames will be equivalent to Kripke frames, and we know that any product of
Kripke frames satisfies commutativity axioms and Church-Rosser axiom. In
order to construct such an n-frame, we introduce pseudo-infinite paths with
stops.

Definition 5.1 For a frame F = (W,R) with root a0 we define a path with
stops as a tuple a0a1 . . . an, so that ai ∈W or ai = 0 and after eliminating zeros
each point is related to the next one by relation R. We also consider infinite
paths with stops that end with infinitely many zeros. We call these sequences
pseudo-infinite paths (with stops). Let Wω be the set of all pseudo-infinite
paths in W .

Define fF : Wω →W in the following way: for α = a0a1 . . . an0ω, where 0ω

is an infinite sequence of zeros and an 6= 0, we put

fF (α) = an.

We also define

st(α) = min {N | ∀k ≥ N(ak = 0)} ;

α|k = a1 . . . ak;

Uki (α) = {β ∈Wω |α|m = β|m & fF (α)RifF (β), where m = max(k, st(α))} .

Lemma 5.2 Uki (α) ⊆ Umi (α) whenever k ≥ m for any i ∈ {1, 2}.
Proof. Let β ∈ Uki (α). Since α|k = β|k and k ≥ m, then α|m = β|m. Hence,
β ∈ Umi (α). 2

Definition 5.3 Due to Lemma 5.2, sets Un(α) form a filter base. So we can
define

τ(α)− the filter with base {Un(α) |n ∈ N} ;

Nω(F ) = (Wω, τ) — is a dense n-frame based on F .

Frame Nω(F ) is dense in a sense that the intersection of all neighborhoods
of a point is empty. So, there are no minimal neighborhoods unlike N (F ).

Lemma 5.4 Let F = (W,R) be a Kripke frame with root a0, then

fF : Nω(F ) � N (F ).

Proof. From now on in this proof we will omit the subindex in fF . Since
for any b ∈ W there is a path a0a1 . . . b and, hence for pseudo-infinite path
α = a0a1 . . . b0

ω ∈ X, f(α) = b and f is surjective.
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Assume, that α ∈ Wω and U ∈ τ(α). We need to prove that R(f(α)) ⊆
f(U). There exists m such that Um(α) ⊆ U and since f(Um(α)) = R(f(α)),
then

R(f(α)) = f(Um(α)) ⊆ f(U).

Assume that α ∈ Wω and V is a neighborhood of f(α), i.e. R(f(α)) ⊆ V .
We need to prove that there exists U ∈ τ(α) such that f(U) ⊆ V . As U we
take Um(α) for some m ≥ st(α), then

f(Um(α)) = R(f(α)) ⊆ V.

2

Corollary 5.5 For any frame F Log(Nω(F )) ⊆ Log(F ).

Proof. It follows from Lemmas 3.7, 5.4 and Corollary 3.11

Log(Nω(F )) ⊆ Log(N (F )) = Log(F ).

2

Let F1 = (W1, R1) = F r11 and F2 = (W2, R2) = F r22 be two Kripke frames
with roots. We assume that W1 ∩W2 = ∅. Consider the product of n-frames
X1 = (X1, τ1) = Nω(F1) and X2 = (X2, τ2) = Nω(F2)

X = (X1 ×X2, τ
′
1, τ
′
2) = Nω(F1)×n Nω(F2).

We define function g : X1 × X2 → 〈F1, F2〉 by induction, as follows.
Let (α, β) ∈ X1 ×X2, so that α = x1x2 . . . and β = y1y2 . . ., xi ∈W1 ∪ {0},

yj ∈ W2 ∪ {0}. We define s(α, β) to be the finite sequence that we get after
eliminating all zeros from the infinite sequence x1y1x2y2 . . .. Now note, that
we can uniquely map finite sequence s(α, β) to a path in F1 × F2, because in
F1 × F2 we can only go up or right. Going up corresponds to adding a point
from F2, whereas going right corresponds to adding a point from F1.

To be more precise, let s(α, β) = c = w1w2 . . . wn. We define h(c) by
induction. If c = ε (empty string), then h(c) = (r1, r2). Assume that we
already define h(c) = (x, y) and b = cu, then

h(b) =

{
h(c)R′1(u, y) if u ∈W1

h(c)R′2(x, u) if u ∈W2.

This definition is correct since, in the first case xR1u and, in the second
case, yR2u.

So we put g(α, β) = h(s(α, β)).

Lemma 5.6 Function g defined above is a p-morphism: g : X � N (〈F1, F2〉).
Proof. Let z = (r1, r2)S1(z1, t1)S2 . . . Sn(zn, tn) ∈ 〈F1, F2〉. Define for i ≤ n

xi =

{
zi, if Si = R′1;
0, if Si = R′2;

yi =

{
0, if Si = R′1;
ti, if Si = R′2.



Kudinov 385

Let α = x1x2 . . . xn0ω and β = y1y2 . . . yn0ω, then g(α, β) = z. Hence g is
surjective.

The next two conditions we check only for τ1, since for τ2 it is similar.
Assume that (α, β) ∈ X1 × X2 and U ∈ τ1(α, β). We need to prove that
R′1(g(α, β)) ⊆ g(U). There exist m > max {st(α), st(β)} such that Um1 (α) ×
{β} ⊆ U and, since g(Um1 (α)× {β}) = R′1(g(α, β)), then

R′1(g(α, β)) = g(Um1 (α)× {β}) ⊆ g(U);

where Um1 (α) is the corresponding neighborhood from X1.
Assume that (α, β) ∈ X1×X2 and R′1(g(α, β)) ⊆ V . We need to prove that

there exists U ∈ τ ′1(α, β) such that g(U) ⊆ V . As U we take U ′m(α)× {β} for
some m > max {st(α), st(β)}, then

g(U ′m(α)× {β}) = R′1(g(α, β)) ⊆ V.

2

Corollary 5.7 Let F1 = (W1, R1) and F2 = (W2, R2), then Log(Nω(F1) ×
Nω(F2)) ⊆ Log(〈F1, F2〉).

It immediately follows from Lemma 5.6 and Corollary 3.11.

Theorem 5.8 Logic 〈K,K〉 is complete with respect to products of normal
neighborhood frames, i.e.

〈K,K〉 = K×n K. (4)

Proof. The inclusion from left to rignt of (4) was proved in Corollary 3.19.
The converse inclusion follows from Theorem 4.4 and Corollary 5.7. Indeed

K×n K =
⋂

X1,X2∈nV (K)

Log(X1 × X2) ⊆

⊆
⋂

F1,F2−Kripke frames

Log(Nω(F1)×Nω(F2)) ⊆

⊆
⋂

F1,F2−Kripke frames

Log(〈F1, F2〉) ⊆ 〈K,K〉.

2

6 Conclusion

Even though the logic 〈K,K〉 has infinite axiomatization, it is decidable. We
will not go into details, but the argument is similar to the ones in [4]. To refute
a formula φ we only need to consider frames of bounded depth, and standard
argument shows that we can also assume bounded branching.

Even more, it seems that logic 〈K,K〉 has fmp in the class of weak products
of Kripke frames. If the bounds turn out to be polinomial it, probably, will
give us PSPACE completeness for 〈K,K〉.

The obvious next step is to apply these methods to other logics and try
to prove completeness results for products of neighborhood frames for other
logics. For example, we conjecture that 〈K4,K4〉 is the d-logic of all products
of topological spaces.
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