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Abstract

We introduce a novel decidable fragment of first-order logic. The fragment is one-
dimensional in the sense that quantification is limited to applications of blocks of
existential (universal) quantifiers such that at most one variable remains free in the
quantified formula. The fragment is closed under Boolean operations, but additional
restrictions (called uniformity conditions) apply to combinations of atomic formulae
with two or more variables. We argue that the notions of one-dimensionality and
uniformity together offer a novel perspective on the robust decidability of modal log-
ics. We also show that the one-dimensional fragment is expressively equivalent to a
polyadic modal logic with the capacity of permuting and forming Boolean combina-
tions of accessibility relations. Furthermore, we establish that minor modifications to
the restrictions of the syntax of the one-dimensional fragment lead to undecidable for-
malisms. Namely, the two-dimensional and non-uniform one-dimensional fragments
are shown undecidable. Finally, we prove that with regard to expressivity, the one-
dimensional fragment is incomparable with both the guarded negation fragment and
two-variable logic with counting. Our proof of the decidability of the one-dimensional
fragment is based on a technique involving a direct reduction to the monadic class
of first-order logic. The novel technique is itself of an independent mathematical
interest, and one of the principal contributions of the paper.
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1 Introduction

Decidability questions constitute one of the core themes in computer science
logic. Decidability properties of several fragments of first-order logic have been
investigated after the completion of the program concerning the classical deci-
sion problem. Currently perhaps the most important two frameworks studied
in this context are the guarded fragment [1] and two-variable logics.

Two-variable logic FO2 was introduced by Henkin in [10] and showed decid-
able in [14] by Mortimer. The satisfiability and finite satisfiability problems of
two-variable logic were proved to be NEXPTIME-complete in [8]. The exten-
sion of two-variable logic with counting quantifiers, FOC2, was shown decidable
in [9], [15]. It was subsequently proved to be NEXPTIME-complete in [16].

Research concerning decidability of variants of two-variable logic has been
very active in recent years. Recent articles in the field include for example
[3] [5], [11], [17], and several others. The recent research efforts have mainly
concerned decidability and complexity issues in restriction to particular classes
of structures, and also questions related to different built-in features and oper-
ators that increase the expressivity of the base language.

Guarded fragment GF was originally conceived in [1]. It is a restriction of
first-order logic that only allows quantification of “guarded” new variables—a
restriction that makes the logic rather similar to modal logic.

The guarded fragment has generated a vast literature, and several related
decidability questions have been studied. The fragment has recently been signif-
icantly generalized in [2]. The article introduces the guarded negation first-order
logic GNFO. This logic only allows negations of formulae that are guarded in
the sense of the guarded fragment. The guarded negation fragment has been
shown complete for 2NEXPTIME in [2].

Two-variable logic and guarded-fragment are examples of decidable frag-
ments of first-order logic that are not based on restricting the quantifier alter-
nation patterns of formulae, unlike the prefix classes studied in the context of
the classical decision problem. Surprisingly, not many such frameworks have
been investigated in the literature.

In this paper we introduce a novel decidable fragment that essentially allows
arbitrary quantifier alternation patterns. The uniform one-dimensional frag-
ment UF1 of first-order logic is obtained by restricting quantification to blocks
of existential (universal) quantifiers that leave at most one free variable in the
resulting formula. Additionally, a uniformity condition applies to the use of
atomic formulae: if n, k ≥ 2, then a Boolean combination of atoms R(x1, ..., xk)
and S(y1, ..., yn) is allowed only if {x1, ..., xk} = {y1, ..., yn}. Boolean combi-
nations of formulae with at most one free variable can be formed freely.

We establish decidability of the satisfiability and finite satisfiability prob-
lems of UF1. We also show that if the uniformity condition is lifted, we ob-
tain an undecidable logic. Furthermore, if we keep uniformity but go two-
dimensional by allowing existential (universal) quantifier blocks that leave two
variables free, we again obtain an undecidable formalism. Therefore, if we
lift either of the two restrictions that our fragment is based on, we obtain an
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undecidable logic.
In addition to studying decidability, we also show that UF1 is incomparable

in expressive power with both FOC2 and GNFO.
In [18], Vardi initiated an intriguing research effort that aims to understand

phenomena behind the robust decidability of different variants of modal logic.
In addition to [18], see also for example [7] and the introduction of [2]. Modal
logic indeed has several features related to what is known about decidability.
In particular, modal logic embeds into both FO2 and GF.

However, there exist several important and widely applied decidable exten-
sions of modal logic that do not embed into both FO2 and GF. Such extensions
include Boolean modal logic (see [6], [13]) and basic polyadic modal logic, i.e,
modal logic containing accessibility relations of arities higher than two (see [4]).
Boolean modal logic allows Boolean combinations of accessibility relations and
therefore can express for example the formula ∃y

(
¬R(x, y) ∧ P (y)

)
. Polyadic

modal logic can express the formula ∃x2...∃xk
(
R(x1, ..., xk)∧P (x2)∧...∧P (xk)

)
.

Boolean modal logic and polyadic modal logic are both inherently one-
dimensional, and furthermore, satisfy the uniformity condition of UF1. Both
logics embed into UF1. The notions of one-dimensionality and uniformity can
be seen as novel features that can help, in part, explain decidability phenomena
concerning modal logics.

Importantly, also the equality-free fragment of FO2 embeds into UF1. In
fact, when attention is restricted to vocabularies with relations of arities at
most two, the expressivities of UF1 and the equality-free fragment of FO2

coincide. Instead of seeing this as a weakness of UF1, we in fact regard UF1 as
a canonical generalisation of (equality-free) FO2 into contexts with arbitrary
relational vocabularies. The fragment UF1 can be regarded as a vectorisation
of FO2 that offers new possibilities for extending research efforts concerning
two-variable logics. It is worth noting that for example in database theory
contexts, two-variable logics as such are not always directly applicable due to the
arity-related limitations. Thus we believe that the one-dimensional fragment
is indeed a worthy discovery that extends the scope of research on two-variable
logics to the realm involving relations of arbitrary arities.

Instead of extending basic techniques from the field of two-variable logic,
our decidability proof is based on a direct satisfiability preserving translation
of UF1 into monadic first-order logic. The novel proof technique is mathe-
matically interesting in its own right, and is in fact a central contribution of
this article; the proof technique is clearly robust and can be modified and ex-
tended to give other decidability results. Furthermore, as a by-product of our
proof, we identify a natural polyadic modal logic MUF1, which is expressively
equivalent to the one-dimensional fragment. This modal normal form for the
one-dimensional fragments is also—we believe—a nice contribution.

2 Preliminaries

Let Z+ denote the set of positive integers. Let T denote a complete relational
vocabulary, i.e., T :=

⋃
k∈Z+

τk, where τk denotes a countably infinite set of
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k-ary relation symbols. Each vocabulary τ we consider below is assumed to be
a subset of T . A τ -formula of first-order logic is a formula whose set of non-
logical symbols is a subset of τ . A τ -model is a model whose set of interpreted
non-logical symbols is τ .

Let VAR denote the countably infinite set {xi | i ∈ Z+ } of variable symbols.
We define the set of T -formulae of first-order logic in the usual way, assuming
that all variable symbols are from VAR. Below we use meta-variables x, y, z in
order to denote variables in VAR. Also symbols of the type yi and zi, where
i ∈ Z+, will be used as meta-variables. In addition to meta-variables, we also
need to directly use the variables xi ∈ VAR below. Note that for example
the meta-variables y1 and y2 may denote the same variable in VAR, while the
variables x1, x2 ∈ VAR of course simply are different variables.

Let R be a k-ary relation symbol, k ∈ Z+. An atomic formula R(y1, ..., yk)
is called m-ary if there are exactly m distinct variables in the set {y1, ..., yk}.
For example, if x, y are distinct variables, then S(x, y) and T (y, x, y, y) are
binary, and U(x1, x6, x3, x2, x1, x6) is 4-ary. An m-ary τ -atom is an atomic
formula that is m-ary, and the relation symbol of the formula is in τ .

Let τ ⊆ T . Let M a τ -model with the domain M . A function f that
maps some subset of VAR into M is an assignment. Let ϕ be a τ -formula
with the free variables y1, ..., yk. Let f be an assignment that interprets the
free variables of ϕ in M . We write M, f |= ϕ if M satisfies ϕ when the free
variables of ϕ are interpreted according to f . Let u1, ..., uk ∈ M . Let ϕ be a

τ -formula whose free variables are among y1, ..., yk. We write M, (u1,...,uk)
(y1,...,yk) |= ϕ

if M, f |= ϕ for some assignment f such that f(yi) = ui for each i ∈ {1, .., k}.
By a non-empty conjunction we mean a finite conjunction with at least one

conjunct; for example R(x, y) ∧ ∃yP (y) and > are non-empty conjunctions.
By monadic first-order logic, or MFO, we mean the fragment of first-order

logic without equality, where formulae contain only unary relation symbols.
Let k ∈ Z+. A k-permutation is a bijection σ : {1, ..., k} → {1, ..., k}. When

k is irrelevant or clear from the context, we simply talk about permutations.
Let k ∈ Z+. We let (u, ..., u)k and uk denote the k-tuple containing k copies

of the object u. When k = 1, this tuple is identified with the object u.
Let l and k ≤ l be positive integers. Let K be a set, and let (s1, ..., sl) ∈ Kl

be a tuple. We let (s1, ..., sl) � k denote the tuple (s1, ..., sk). Let R ⊆ Kl

be an l-ary relation. We let R � k denote the k-ary relation R′ ⊆ Kk defined
such that for each (s1, ..., sk) ∈ Kk, we have (s1, ..., sk) ∈ R′ iff (s1, ..., sk) =
(u1, ..., ul) � k for some tuple (u1, ..., ul) ∈ R.

Recall that
∧
∅ is assumed to be always true, while

∨
∅ is always false.

3 The one-dimensional fragment

We shall next define the uniform one-dimensional fragment UF1 of first-order
logic. Let Y = {y1, ..., yn} be a set of variable symbols, and let R be a k-
ary relation symbol. An atomic formula R(yi1 , ..., yik) is called a Y -atom if
{yi1 , ..., yik} = Y . A finite set of Y -atoms is called a Y -uniform set. When Y is
irrelevant or known from the context, we may simply talk about a uniform set.
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For example, assuming that x, y, z are distinct variables, {T (x, y), S(y, x)} and
{R(x, x, y), R(y, y, x), S(y, x)} are uniform sets, while {R(x, y, z), R(x, y, y)} is
not. The empty set is a ∅-uniform set.

Let τ ⊆ T . The set UF1(τ), or the set of τ -formulae of the one-dimensional
fragment, is the smallest set F satisfying the following conditions.

(i) Every unary τ -atom is in F , and ⊥,> ∈ F .

(ii) If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

(iii) Let Y = {y1, ..., yk} be a set of variable symbols. Let U be a finite set of
formulae ψ ∈ F whose free variables are in Y . Let V ⊆ Y . Let F be a
V -uniform set of τ -atoms. Let ϕ be any Boolean combination of formulae
in U ∪ F . Then ∃y2...∃yk ϕ ∈ F .

(iv) If ϕ ∈ F , then ∃y ϕ ∈ F .

Notice that there is no equality symbol in the language. Notice also that the
formation rule (iv) is strictly speaking not needed since the rule (iii) covers it.
Concerning the rule (i), notice that also atoms of the type S(x, ..., x)k, where
k 6= 1, are legitimate formulae. Let UF1 denote the set UF1(T ).

3.1 Intuitions underlying the decidability proof

We show decidability of the satisfiability and finite satisfiability problems of
UF1 by translating UF1-formulae into equisatisfiable MFO-formulae. We first
translate UF1 into a logic DUF1. This logic is a normal form for UF1 such
that all literals of arities higher than one appear in simple conjunctions, as for
example in the formula ∃y∃z

(
R(x, z, y, z)∧¬S(y, x, z)∧ϕ(y)

)
. The logic DUF1

is then translated into a modal logic MUF1, which is an essentially variable-free
formalism for DUF1. In Section 4 we show how formulae of the logic MUF1 are
translated into equisatisfiable formulae of MFO, which is well-known to have
the finite model property.

The semantics of MUF1 is defined (see Section 3.4) with respect to pointed
models (M, u), where u ∈ M = Dom(M). If ϕ is a formula of MUF1, we let
‖ϕ‖M denote the set { v ∈ M | (M, v) |= ϕ }. In Section 4 we fix a MUF1-
formula ψ and translate it to an MFO-formula ψ∗(x). We prove that if (M, v) |=
ψ, then ψ∗(x) is satisfied in a model T, whose domain is M × T , where T is
the domain of an m-dimensional hypertorus of arity l. Such a hypertorus is
a structure (T,R1, ..., Rm), where the m different relations Ri are all l-ary.
Intuitively, the domain of T consists of several copies of M , one copy for each
point of the hypertorus. Let SUBψ denote the set of subformulae of ψ. The
vocabulary of T consists of monadic predicates Pα and Pt, where α ∈ SUBψ
and t ∈ T . The predicates are interpreted such that PT

α := ‖α‖M × T and
PT
t := M × {t}.

We will give a rigorous and self-contained proof of the decidability of UF1,
but to get an (admittedly very rough) initial idea of some of the related back-
ground intuitions, consider the following construction. (It may also help to
refer back to this section while internalizing the proof.)

Consider a formula of ordinary unimodal logic ϕ and a Kripke model N.
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We can maximize the accessibility relation R of N by defining a new relation
S ⊆ N × N such that (u, v) ∈ S iff for all formulae 3β ∈ SUBϕ, we have

(N, v) |= β ⇒ (N, u) |= 3β. (1)

If we replace R by S in N, then each point w in the new model will satisfy
exactly the same subformulae of ϕ as w satisfied in the old model. Thus we can
encode information concerning R by using the (so-called filtration) condition
given by Equation 1. The equation talks about the sets ‖β‖N and ‖3β‖N, and
thus it turns out that we can encode the information given by the equation by
monadic predicates Pβ and P3β corresponding to the sets ‖β‖N and ‖3β‖N
(cf. the formulae PreConsδ and Consδ in Section 4.1). This way we can encode
information concerning accessibility relations by using formulae of MFO.

This construction does not work if one tries to maximize both a binary
relation R and its complement R at the same time: the problem is that the
maximized relations S and S will not necessarily be complements of each other.
For this reason we need to make enough room for maximizing accessibility
relations. Below we will simultaneously maximize several types of accessibility
relations that cannot be allowed to intersect. Thus we need to use an n-
dimensional hypertorus (rather than a usual 2D torus). Each k-ary accessibility
relation type δ of the translated MUF1-formula will be reserved a sequence
r := (M×{t1}, ...,M×{tk}) of copies of M from the domain of T. Information
concerning δ will be encoded into this sequence r of models.

3.2 Diagrams

Let τ ⊆ T be a finite vocabulary. Let k ≥ 2 be an integer, and let Y =
{y1, ..., yk} be a set of distinct variable symbols. A uniform k-ary τ -diagram is
a maximal satisfiable set of Y -atoms and negated Y -atoms of the vocabulary
τ . (The empty set is not considered to be a uniform k-ary τ -diagram; this case
is relevant when τ contains no relation symbols of the arity k or higher.)

For example, let τ = {P,R, S}, where the arities of P , R, S are 1, 2, 3, re-
spectively. Now {R(x, y),¬R(y, x), S(y, x, x), S(x, y, x),¬S(x, x, y), S(x, y, y),
¬S(y, x, y), S(y, y, x)} is a uniform binary τ -diagram. Here we assume that x
and y are distinct variables.

Let τ ⊆ T be a finite vocabulary. The set DUF1(τ) is the smallest set F
satisfying the following conditions.

(i) Every unary τ -atom is in F . Also ⊥,> ∈ F .

(ii) If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

(iii) Let δ be a uniform k-ary τ -diagram in the variables y1,...,yk, where k ≥ 2.
Let ϕ be a non-empty conjunction of a finite set U of formulae in F whose
free variables are among y1,...,yk. Then ∃y2...∃yk

(∧
δ ∧ ϕ

)
∈ F .

(iv) If ϕ ∈ F has at most one free variable, y, then ∃y ϕ ∈ F .

Let DUF1 denote the set of formulae ϕ such that for some finite τ ⊆ T ,
we have ϕ ∈ DUF1(τ). UF1 translates effectively into DUF1; see the appendix
for the proof. Here we briefly sketch the principal idea behind the translation.
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Consider a UF1-formula ∃y ψ, where y is a tuple of variables. Put ψ into
disjunctive normal form ψ1 ∨ ... ∨ ψk. Thus ∃y ψ translates into the formula
∃y ψ1 ∨ ... ∨ ∃y ψk, where each ψi is a conjunction. Each ψi is equivalent to a
disjunction ψi,1 ∨ ... ∨ ψi,m, where ψi,j is of the desired type

(∧
δ ∧ ϕ

)
.

3.3 Hypertori

We next define a class of hypertori. It may help to have a look at Lemma 3.1
before internalizing the definition. Let l ≥ 2 and n ≥ 2 be integers. Define
T := {1, ..., n} × {1, ..., l} × {0, 1, 2}. Let (t1, ..., tl) ∈ T l be a tuple. Let t1 =
(m,m′,m′′). Let j ∈ {1, ..., n}. A tuple (t1, ..., tl) ∈ T l, where each ti =
(p, qi, r), is the j-th good l-ary sequence originating from t1, if for each i ∈
{2, ..., l}, the following conditions hold.

(i) p−m ≡ j − 1 mod n.

(ii) qi −m′ ≡ i− 1 mod l.

(iii) r −m′′ ≡ 1 mod 3.

Define the relation Rj ⊆ T l such that (s1, ..., sl) ∈ Rj iff (s1, ..., sl) is the j-th
good l-ary sequence originating from s1. The structure

(
T,R1, ..., Rn

)
is the

n-dimensional hypertorus of the arity l. The following lemma is easy to prove.

Lemma 3.1 Let
(
T,R1, ..., Rn

)
be an n-dimensional hypertorus of the arity l.

Let j ∈ {1, ..., n} and k ∈ {2, ..., l}. Then the following conditions hold.

(i) For each t ∈ T , there exists exactly one tuple (s1, ..., sk) ∈ Rj � k such
that t = s1. We have si 6= sj for all i, j ∈ {1, ..., k} such that i 6= j.

(ii) Let (s1, ..., sk) ∈ Rj � k. Let σ be a k-permutation, and let i ∈ {1, ..., n} \
{j}. Then (sσ(1), ..., sσ(k)) 6∈ Ri � k.

(iii) Let (s1, ..., sk) ∈ Rj � k. Let µ be any k-permutation other than the
identity permutation. Then (sµ(1), ..., sµ(k)) 6∈ Rj � k.

In the rest of the article, we let T(n, l) denote the n-dimensional hypertorus
of the arity l. We let T (n, l) and Rj(n, l) denote, respectively, the domain and
the relation Rj of T(n, l).

3.4 Translation into a modal logic

Let τ ⊆ T be a finite vocabulary, and let k ≥ 2 be an integer. Let M be a τ -
model with the domain M . Let δ be a uniform k-ary τ -diagram in the variables
x1, ..., xk. Notice that here we use the standard variables x1, ..., xk from VAR.
The diagram δ is a standard uniform k-ary τ -diagram. We define ‖δ‖M to be

the relation { (u1, ..., uk) ∈ Mk | M, (u1,...,uk)
(x1,...,xk) |=

∧
δ }. Standard variables are

needed in order to uniquely specify the order of elements in tuples of ‖δ‖M.
Let δ be a standard uniform k-ary τ -diagram. Let q ≤ k be a positive

integer. Let t : {1, ..., k} → {1, ..., q} be a surjection. We let δ/t denote the set
obtained from δ by replacing each variable xi by xt(i).

Let k and q be positive integers such that 2 ≤ q ≤ k. Let η and δ be standard
uniform q-ary and k-ary τ -diagrams, respectively. Let f : {1, ..., k} → {1, ..., q}
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be a surjection. Assume that
∧
η |=

∧
δ/f , i.e., the implication M, h |= η ⇒

M, h |= δ/f holds for each τ -model M and each assignment h interpreting the
variables x1, ..., xq in the domain of M. Then we write η ≤f δ.

We then define a modal logic that provides an essentially variable-free rep-
resentation of UF1. Define the set MUF1(τ) to be the smallest set F such that
the following conditions are satisfied.

(i) If S ∈ τ is a relation symbol of any arity, then S ∈ F . Also ⊥,> ∈ F .

(ii) If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

(iii) If ϕ1, ..., ϕk ∈ F and δ is a standard uniform k-ary τ -diagram, then
〈δ〉(ϕ1, ..., ϕk) ∈ F .

(iv) If ϕ ∈ F , then 〈E〉ϕ ∈ F . (Here 〈E〉 denotes the universal modality ; see
below for the semantics.)

The semantics of MUF1(τ) is defined with respect to pointed σ-models
(M, w), where M is an ordinary σ-model of predicate logic for some vocab-
ulary σ ⊇ τ , and w is an element of the domain M of M. Obviously we
define that (M, w) |= > always holds, and that (M, w) |= ⊥ never holds. Let
S ∈ τ be an n-ary relation symbol. We define (M, w) |= S ⇔ wn ∈ SM,
where SM is the interpretation of the relation symbol S in the model M. The
Boolean connectives ¬ and ∧ have their usual meaning. For formulae of the
type 〈δ〉(ϕ1, ..., ϕk), we define that (M, w) |= 〈δ〉(ϕ1, ..., ϕk) if and only if there
exists a tuple (u1, ..., uk) ∈ ‖δ‖M such that u1 = w and (M, ui) |= ϕi for each
i ∈ {1, ..., k}. For formulae 〈E〉ϕ, we define (M, w) |= 〈E〉ϕ if and only if there
exists some u ∈M such that (M, u) |= ϕ.

When ϕ is a MUF1(τ)-formula and M a σ-model with the domain M , we
let ‖ϕ‖M denote the set {u ∈ M | (M, u) |= ϕ }. We let MUF1 denote the
union of all sets MUF1(τ), where τ is a finite subset of T .

It is very easy to show that there is an effective translation that turns any
formula γ(x) ∈ DUF1 into a formula χ ∈ MUF1 such that (M, w) |= χ ⇔
M, wx |= γ(x) for all τ -models M, where τ is the set of non-logical symbols in
γ(x). (The set of non-logical symbols in χ is contained in τ , and the formula
γ(x) can either be a sentence or have the free variable x.)

4 UF1 is decidable

Let us fix a formula ψ of MUF1. We will first define a translation of ψ to
an MFO-formula ψ∗(x) in Section 4.1. We will then show in Sections 4.2 and
4.3 that the translation indeed preserves equivalence of satisfiability over finite
models as well as over all models. Due to the above effective translations from
UF1 to DUF1 and from DUF1 to MUF1, this implies that the satisfiability and
finite satisfiability problems of UF1 are decidable.

4.1 Translating MUF1 into monadic first-order logic

We assume, w.l.o.g., that ψ contains at least one subformula of the type
〈δ〉(χ1, χ2). If not, we redefine ψ. The vocabulary of ψ may of course grow. We
also assume, w.l.o.g., that ψ does not contain occurrences of the symbols >,
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⊥. Furthermore, we assume, w.l.o.g., that if R is a relation symbol occurring
in some diagram of ψ, then ¬R also occurs in ψ as a subformula: we can of
course always add the conjunct R ∨ ¬R to ψ.

Let Vψ be the set of all relation symbols in ψ, whether they occur in dia-
grams or as atomic subformulae; in fact, due to our assumptions above, the set
of atomic formulae in ψ is equal to Vψ. Let Dψ be the set of relation symbols
occurring in the diagrams of ψ. Let Vψ(k) denote the set of k-ary relation sym-
bols in Vψ. Define Dψ(k) analogously. Due to the assumption that ψ contains
a subformula 〈δ〉(χ1, χ2), each relation symbol of some arity m ≥ 2 that occurs
as an atom in ψ, also occurs in the diagram δ. (This is due to the definition of
MUF1.) Thus Vψ(n) = Dψ(n) for all n > 1.

Let M denote the maximum arity of all diagrams in ψ. For each k ∈
{2, ...,M}, let ∆k denote the set of exactly all standard uniform k-ary Vψ-
diagrams. Let ∆ denote the union of the sets ∆k, where k ∈ {2, ...,M}. Let
N := max{ |∆k| | k ∈ {2, ...,M} }. Recall that T (N ,M) denotes the domain
of the N -dimensional hypertorus of the arity M. For each k ∈ {2, ...,M}, de-
fine an injection bk : ∆k −→ {R1(N ,M), ..., RN (N ,M) }. For a k-ary diagram
δ ∈ ∆k, let Tδ denote the k-ary relation

(
bk(δ)

)
� k.

Let SUBψ denote the set of subformulae of the formula ψ. Fix fresh unary
relation symbols Pα and Pt for each formula α ∈ SUBψ and torus point
t ∈ T (N ,M). The vocabulary of the translation ψ∗(x) of ψ will be the set
{Pα | α ∈ SUBψ } ∪ {Pt | t ∈ T (N ,M) }. We let V ∗ denote this set.

We shall next define a collection of auxiliary formulae needed in order to
define ψ∗(x). If a pointed model (M, u) satisfies ψ, then ψ∗(x) will be satisfied
in a larger model; the related model construction is defined in the beginning of
Section 4.2. The predicates of the type Pα will be used to encode information
about sets ‖α‖M, while the predicates Pt encode information about the dia-
grams of ψ. The predicates Pt are crucial when defining a Vψ-model B that
satisfies ψ based on a V ∗-model A of ψ∗(x) in Section 4.3.

Let δ ∈ ∆k. Define PreConsδ(x1, ..., xk) to be the formula∧
〈δ〉(χ1,...,χk) ∈ SUBψ

(
Pχ1

(x1) ∧ ... ∧ Pχk(xk)→ P〈δ〉(χ1 , ... , χk)(x1)
)
.

Let ∆(δ) be the set of pairs (η, f), where η ∈ ∆ is a p-ary diagram for some
p ≥ k, and f : {1, ..., p} → {1, ..., k} is a surjection such that we have δ ≤f η.
The set ∆(δ) is the set of inverse projections of δ in ∆. Define

Consδ(x1, ..., xk) :=
∧

(η,f)∈∆(δ)

PreConsη(xf(1), ..., xf(p)).

The following formula is the principal formula that encodes information about
diagrams of δ (cf. Lemma 4.1).

Diagδ(x1, ..., xk) :=
∨

(t1 , ... , tk) ∈ Tδ

Pt1(x1) ∧ ... ∧ Ptk(xk) ∧ Consδ(x1, ..., xk).



Hella and Kuusisto 283

Let +(δ) denote the set of relation symbols R that occur positively in δ, i.e.,
there exists some atom R(y1, ..., yn) ∈ δ, where n is the arity of R. Let −(δ)
be the relation symbols R that occur negatively in δ, i.e., ¬R(y1, ..., yn) ∈ δ
for some atom R(y1, ..., yn). The following three formulae encode information
about atomic formulae in ψ. Define

Localδ(x) :=
∧

R∈+(δ)

P
R

(x) ∧
∧

R∈−(δ)

P¬R(x),

LocalDiagδ(x) := Localδ(x) → PreConsδ(x, ..., x)k,
ψlocal :=

∧
δ ∈∆

∀xLocalDiagδ(x).

The next formula is essential in the construction of a Vψ-model of ψ from
a V ∗-model of ψ∗(x) in Section 4.3. The two models have the same domain.
The formula states that each tuple can be interpreted to satisfy some diagram
δ such that information concerning the unary predicates in V ∗ is consistent
with δ. See the way B is defined based on A in Section 4.3 for further details.
Define

ψtotal :=
∧

k∈{2,...,M}

∀x1...∀xk
∨

δ ∈∆k

Consδ(x1, ..., xk).

Also the following formula is crucial for the definition of B.

ψuniq :=
∧

t, s ∈ T (N ,M), t 6=s

¬∃x
(
Pt(x) ∧ Ps(x)

)
.

Let ¬α, (β ∧ γ), 〈E〉χ, and 〈δ〉(χ1, ..., χk) be formulae in SUBψ. The fol-
lowing formulae recursively encode information concerning subformulae of ψ.
Define

ψ¬α := ∀x
(
P¬α(x)↔ ¬Pα(x)

)
,

ψ(β∧γ) := ∀x
(
P(β∧γ)(x)↔

(
Pβ(x) ∧ Pγ(x)

))
,

ψ〈E〉χ := ∀x
(
P〈E〉χ(x)↔ ∃yPχ(y)

)
,

ψ〈δ〉(χ1,...,χk) := ∀x1

(
P〈δ〉(χ1,...,χk)(x1)

↔ ∃x2...xk
(
Diagδ(x1, ..., xk)

∧Pχ1(x1) ∧ ... ∧ Pχk(xk)
) )
.

Let ψsub :=
∧

α∈ SUBψ

ψα. Finally, we define

ψ∗(x) := ψtotal ∧ ψuniq ∧ ψlocal ∧ ψsub ∧ Pψ(x).

4.2 Satisfiability of ψ implies satisfiability of ψ∗(x)

Fix an arbitrary model Vψ-model M with the domain M . Fix a point w ∈M .
Assume (M, w) |= ψ. We shall next construct a model T with the domain

M × T (N ,M). We then show that T, (w,t)
x |= ψ∗(x), where t is a torus point.

If M is a finite model, then so is T.
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The domain M × T (N ,M) of the V ∗-model T consists of copies of M , one
copy for each torus point t ∈ T (N ,M). Let us define interpretations of the
symbols in V ∗. Consider a symbol Pα, where α ∈ SUBψ. If (u, t) ∈ Dom(T),
then (u, t) ∈ PT

α ⇔ u ∈ ‖α‖M. Consider then a symbol Pt, where t ∈
T (N ,M). If (u, t′) ∈ Dom(T), then (u, t′) ∈ PT

t ⇔ t′ = t.

Lemma 4.1 Let 〈δ〉(χ1, ..., χk) ∈ SUBψ and (u, t) ∈ Dom(T). Then (M, u) |=
〈δ〉(χ1, ..., χk) iff T, (u,t)

x1
|= ∃x2...∃xk

(
Diagδ(x1, ..., xk) ∧ Pχ1

(x1) ∧ ... ∧
Pχk(xk)

)
.

Proof. Define u1 := u and t1 := t. Assume (M, u1) |= 〈δ〉(χ1, ..., χk). Thus
(u1, ..., uk) ∈ ‖δ‖M for some tuple (u1, ..., uk) such that ui ∈ ‖χi‖M for
each i. Hence (ui, s) ∈ PT

χi for each i and each torus point s. To conclude

the first direction of the proof, it suffices to prove that T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |=

Diagδ(x1, ..., xk) for some torus points t2, ..., tk.
Let t2, ..., tk be the torus points such that (t1, ..., tk) ∈ Tδ. In order to

establish that T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |= Consδ(x1, ..., xk), assume that δ ≤f η,

where η ∈ ∆p and p ≥ k. Assume that 〈η〉(γ1, ..., γp) ∈ SUBψ, and

that T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |= Pγ1(xf(1)) ∧ ... ∧ Pγp(xf(p)). We must show that

(uf(1), tf(1)) ∈ PT
〈η〉(γ1,...,γp).

For each i ∈ {1, ..., p}, as (uf(i), tf(i)) ∈ PT
γi , we have uf(i) ∈ ‖γi‖M

by the definition of PT
γi . As (u1, ..., uk) ∈ ‖δ‖M and δ ≤f η, we have

(uf(1), ..., uf(p)) ∈ ‖η‖M. Therefore we have uf(1) ∈ ‖〈η〉(γ1, ..., γp)‖M. Thus

(uf(1), tf(1)) ∈ PT
〈η〉(γ1,...,γp) by the definition of PT

〈η〉(γ1,...,γp).

We then deal with the converse implication of the lemma. Define

s1 := t and v1 := u. Assume T, (v1,s1)
x1

|= ∃x2...∃xk
(

Diagδ(x1, ..., xk) ∧

Pχ1(x1) ∧ ... ∧ Pχk(xk)
)
. Hence T,

(
(v1,s1),...,(vk,sk)

)
(x1,...,xk) |= Diagδ(x1, ..., xk) for

some tuple
(
(v1, s1), ..., (vk, sk)

)
such that (vi, si) ∈ PT

χi for each i. As

now T,

(
(v1,s1),...,(vk,sk)

)
(x1,...,xk) |= PreConsδ(x1, ..., xk), we infer that (v1, s1) ∈

PT
〈δ〉(χ1,...,χk). By the definition of PT

〈δ〉(χi,...,χk), we have (M, v1) |=
〈δ〉(χ1, ..., χk). 2

Lemma 4.2 Let t be any torus point. Under the assumption (M, w) |= ψ, we

have T, (w,t)
x |= ψ∗(x).

Proof. See the appendix. 2

4.3 Satisfiability of ψ∗(x) implies satisfiability of ψ

Let A be a V ∗-model with the domain A. Assume that A, wx |= ψ∗(x). We next
define a Vψ-model B with the same domain A, and then show that (B, w) |= ψ.

Let U be a non-empty set, and let p ∈ Z+. Let (u1, ..., up) ∈ Up be a tuple.
We say that the tuple (u1, ..., up) spans the set {u1, ..., up}.
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Let k ∈ Z+, and let S ∈ Vψ be a k-ary symbol. We define (u, ..., u)k ∈ SB

iff u ∈ P A
S

. This settles the interpretation of the symbols S ∈ Vψ on tuples
that span sets of size one. Interpretation of the symbols on tuples that span
larger sets is more complicated. We begin with the following lemma, whose
proof is straightforward by Lemma 3.1.

Lemma 4.3 Let u1, ..., uk ∈ A. Assume A, (u1,...,uk)
(x1,...,xk) |= Diagδ(x1, ..., xk).

Then A,
(uσ(1),...,uσ(k))

(x1,...,xk) 6|= Diagη(x1, ..., xk) holds for all all k-permutations σ

and all η ∈ ∆k \ {δ}. Also A,
(uµ(1),...,uµ(k))

(x1,...,xk) 6|= Diagδ(x1, ..., xk) holds for all

k-permutations µ other than the identity permutation.

Let q ∈ {2, ...,M}. Consider subsets of A that have exactly q ≥ 2 ele-
ments. Let us divide such sets into two classes. Let U = {u1, ..., uq} be a set
with q distinct elements. Assume first that there exists some q-permutation

σ and some η ∈ ∆q such that A,
(uσ(1),...,uσ(q))

(x1,...,xq)
|= Diagη(x1, ..., xq). Define

tuple(U) := (uσ(1), ..., uσ(q)) and diagram(U) := η. Define also type(U) = 1.

Assume then that A,
(uσ(1),...,uσ(q))

(x1,...,xq)
6|= Diagη(x1, ..., xq) holds for all η ∈ ∆q

and all q-permutations σ. As A |= ψtotal , there exists some diagram δ ∈ ∆q

such that A,
(u1,...,uq)
(x1,...xq)

|= Consδ(x1, ..., xq). Define tuple(U) = (u1, ..., uq) and

diagram(U) := δ. Define also type(U) = 2.
Notice that by our assumptions in Section 4.1, there are no relation symbols

S ∈ Vψ \Dψ of any arity higher than one. Recall thatM is the maximum arity
of diagrams in ∆. We next define the relations SB, where S ∈ Dψ, on tuples of
elements of A that span sets with q ∈ {2, ...,M} elements. The definition has
the property—as Lemma 4.5 below establishes—that if (u1, ..., uk) ∈ ‖δ‖B,

where δ ∈ ∆k, then A, (u1,...,uk)
(x1,...,xk) |= PreConsδ(x1, ..., xk). In fact this holds also

for tuples that span a singleton set, see Lemma 4.5.
Let q ∈ {2, ...,M}, and let U ⊆ A be a set of the size q. Assume first

that type(U) = 1. Let diagram(U) = η ∈ ∆q and tuple(U) = (u1, ..., uq).

We have A,
(u1,...,uq)
(x1,...,xq)

|= Diagη(x1, ..., xq). Let k ≥ q be an integer. Inter-

pret each k-ary symbol S ∈ Dψ such that B,
(u1,...,uq)
(x1,...,xq)

|= η. This definition

uniquely specifies the interpretation of S on each k-ary tuple that spans the
set {u1, ..., uq}. To see this, let f : {1, ..., k} → {1, ..., q} be a surjection. Now
we have (uf(1), ..., uf(k)) ∈ SB iff S(xf(1), ..., xf(k)) ∈ η.

Assume then that type(U) = 2. Let diagram(U) = δ ∈ ∆q and tuple(U) =

(v1, ..., vq). We have A,
(v1,...,vq)
(x1,...,xq)

|= Consδ(x1, ..., xp). Let k ≥ q be an integer.

Interpret each k-ary symbol S ∈ Dψ such that B,
(v1,...,vq)
(x1,...,xq)

|= δ.

We investigate each q ∈ {2, ...,M}, and thereby obtain a definition of B; if
there are symbols of arity r >M in Dψ, we arbitrarily define the interpreta-
tions of such symbols on tuples that span sets with more than M elements.

Lemma 4.4 If (u1, ..., uk) ∈ Ak and A, (u1,...,uk)
(x1,...,xk) |= Diagδ(x1, ..., xk) for some

δ ∈ ∆k, then (u1, ..., uk) ∈ ‖δ‖B.
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Proof. Assume A, (u1,...,uk)
(x1,...,xk) |= Diagδ(x1, ..., xk). Notice that k ≥ 2, since

diagrams have by definition an arity at least two. As A |= ψuniq , the set
U = {u1, ..., uk} has exactly k elements. We have type(U) = 1, and by Lemma

4.3, tuple(U) = (u1, ..., uk). Thus B, (u1,...,uk)
(x1,...,xk) |= δ. 2

Lemma 4.5 Let k ∈ {1, ...,M}. If (u1, ..., uk) ∈ ‖δ‖B, where δ ∈ ∆k, then

A, (u1,...,uk)
(x1,...,xk) |= PreConsδ(x1, ..., xk).

Proof. The case where (u1, .., uk) spans a singleton set follows since A |= ψlocal .
Let us consider the cases where (u1, .., uk) spans a set of the size two or larger.

Assume that (u1, ..., uk) ∈ ‖δ‖B is a tuple such that U = {u1, ..., uk} con-
tains exactly q ≥ 2 elements. Let m : {1, ..., q} → {1, ..., k} be an injection
such that the tuple (um(1), ..., um(q)) spans the set {u1, ..., uk}.

Assume first that we have A,
(um(σ(1)),...,um(σ(q)))

(x1,...,xq)
|= Diagη(x1, ..., xq) for

some η ∈ ∆q and some q-permutation σ. Thus type(U) = 1. By Lemma
4.3, we have tuple(U) = (um(σ(1)), ..., um(σ(q))) and diagram(U) = η. Let
s : {1, ..., q} → {1, ..., k} be the injection such that s(i) = m(σ(i)) for each

i ∈ {1, ..., q}. As tuple(U) = (us(1), ..., us(q)), we have B,
(us(1),...,us(q))

(x1,...,xq)
|=

η. As A,
(us(1),...,us(q))

(x1,...,xq)
|= Diagη(x1, ..., xq), we have A,

(us(1),...,us(q))

(x1,...,xq)
|=

Consη(x1, ..., xq).
The rest or the argument for the case where type(U) = 1, will be dealt

with below. Let us next elaborate some details related to the case where
type(U) = 2. So, assume type(U) = 2. Let t : {1, ..., q} → {1, ..., k} be an
injection such that tuple(U) = (ut(1), ..., ut(q)). Let diagram(U) = ρ ∈ ∆q.

Thus A,
(ut(1),...,ut(q))

(x1,...,xq)
|= Consρ(x1, ..., xq) and B,

(ut(1),...,ut(q))

(x1,...,xq)
|= ρ.

We then complete the arguments for both cases type(U) = 1 and type(U) =
2. Let (h, ν) ∈ {(s, η), (t, ρ)}, where s and t are the injections defined above,
and of course η and ρ are the related diagrams.

Let g : {1, ..., k} → {1, ..., q} be the surjection such that g(i) = j iff ui =
uh(j). Notice that (uh(1), ..., uh(q)) ∈ ‖ν‖B and (u1, ..., uk) ∈ ‖δ‖B, and these
two tuples span the same set with q elements. Thus we have ν ≤g δ.

We have A,
(uh(1),...,uh(q))

(x1,...,xq)
|= Consν(x1, ..., xq). As ν ≤g δ, we have

A,
(uh(1),...,uh(q))

(x1,...,xq)
|= PreConsδ(xg(1), ..., xg(k)). Recalling that g(i) = j iff ui =

uh(j), we conclude that A, (u1,...,uk)
(x1,...,xk) |= PreConsδ(x1, ..., xk), as required. 2

Lemma 4.6 Let α ∈ SUBψ and u ∈ A. We have (B, u) |= α iff A, ux |= Pα(x).

Proof. See the appendix. 2

Due to Lemma 4.6, we observe that since A, wx |= Pψ(x), we must have
(B, w) |= ψ. Together with Lemma 4.2, this establishes the following theorems.

Theorem 4.7 The one dimensional fragment has the finite model property.

Corollary 4.8 The satisfiability and finite satisfiability problems of the one
dimensional fragment are decidable.
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5 Undecidable extensions

The general one-dimensional fragment GF1 of first-order logic is defined in the
same way as UF1, except that the uniformity condition is relaxed. The set of
τ -formulae of GF1 is the smallest set F satisfying the following conditions.

(i) If ϕ is a unary τ -atom, then ϕ ∈ F . Also >,⊥ ∈ F .

(ii) If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

(iii) Let Y = {y1, ..., yk} be a set of variable symbols. Let U be a finite set
of formulae ψ ∈ F with free variables in Y . Let F be a set of τ -atoms
with free variables in Y . Let ϕ be any Boolean combination of formulae
in F ∪ U . Then ∃y2...∃yk ϕ ∈ F and ∃y1...∃yk ϕ ∈ F .

There are different natural ways of generalizing UF1 so that a two-
dimensional logic is obtained. Here we consider a formalism which we call the
strongly uniform two-dimensional fragment SUF2 of first-order logic. The set
of τ -formulae of SUF2 is the smallest set F satisfying the following conditions.

(i) If ϕ is a unary or a binary τ -atom, then ϕ ∈ F . Also >,⊥ ∈ F .

(ii) If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

(iii) Let y1 and y2 be variable symbols. Let U be a finite set of formulae ψ ∈ F
whose free variables are in {y1, y2}. Let ϕ be any Boolean combination of
formulae in U . Then ∃y2 ϕ ∈ F and ∃y1∃y2 ϕ ∈ F .

(iv) Let Y = {y1, ..., yk}, k ≥ 3, be a set of variable symbols. Let U be a finite
set of formulae ψ ∈ F such that each ψ has at most one free variable, and
the variable is in Y . Let F be a V -uniform set, V ⊆ Y , of τ -atoms. Let ϕ
be any Boolean combination of formulae in F ∪U . Then ∃y3...∃yk ϕ ∈ F ,
∃y2...∃yk ϕ ∈ F and ∃y1...∃yk ϕ ∈ F .

Both of these extensions of UF1 are Π0
1-complete; see the appendix for the

proofs. This shows that if we lift either of the two principal syntactic restric-
tions of UF1, we obtain an undecidable formalism.

6 Expressivity

Guarded negation first-order logic GNFO is a novel fragment of first-order logic
introduced in [2]. GNFO subsumes the guarded fragment GF. It turns out that
UF1 is incomparable in expressivity with both GNFO and the two-variable
fragment with counting quantifiers FOC2. This is proved in the appendix.

7 Conclusion

The main contribution of this paper is the discovery of the fragment UF1 via the
introduction of the notions of uniformity and one-dimensionality. The notions
offer a new perspective on why modal logics are robustly decidable. Also, UF1

extends equality-free FO2 in a natural way, and thus provides a possible novel
direction in the currently very active research on two-variable logics. Also, we
believe that our satisfiability preserving translation of UF1 into the monadic
class is of independent mathematical interest. The translation is robust and
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can be altered and extended to give other decidability proofs.
In the future we intend to study variants of UF1 with identity. It was

observed in [2] that adding the formula ∀x∀y
(
Rxy ↔ x 6= y

)
to GNFO leads to

an undecidable formalism. It is not immediately clear whether the extension of
UF1 with the free use of equality and inequality results in undecidability. We
are currently working on related decidability and complexity questions.

We conjecture that our decidability result can be carried out by an alter-
native method combining a generalization of Scott normal form and the dual
Maslov class. The alternative method does not involve a new proof technique,
unlike the work above.

Appendix

A Translation UF1 → DUF1

Proposition A.1 There is an effective translation that transforms each for-
mula in UF1 to an equivalent formula in DUF1.

Proof. Let χ := ∃y2...∃yk ϕ be a formula of UF1 formed using the formation
rule (iii) in the definition of UF1. We may assume, w.l.o.g., that that the
variables y1, ..., yk are distinct, and that k ≥ 2. Define Y := {y1, ..., yk}. Let
τχ be the set of relation symbols in χ of the arity two and higher.

Put ϕ into disjunctive normal form. We obtain a formula ∃y2...∃yk
(
ϕ1 ∨

... ∨ ϕn
)
. Now distribute the existential quantifier prefix ∃y2...∃yk over the

disjunctions, obtaining the formula ∃y2...∃yk ϕ1 ∨ ... ∨ ∃y2...∃yk ϕn.
Now consider the formula ϕj . Assume first that ϕj is of the type α ∧ ψ,

where α is a non-empty conjunction of atoms and negated atoms of the arity
m ≥ 2, and ψ is a non-empty conjunction of formulae that have at most one
free variable. Let z2, ..., zp ∈ Y denote the variables in Y \ {y1} that occur in
α. Notice that p = m if and only if y1 occurs in α. Let z1 denote y1.

Let zp+1, ..., zk ∈ Y be the variables in Y \ {z1, ..., zp}. Notice that the
formula ψ is equivalent to the conjunction ψ1(z1) ∧ ... ∧ ψk(zk) ∧ β, where
each formula ψi(zi) is the conjunction of exactly all conjuncts of ψ with the
free variable zi, in the case such conjuncts exist, and ψi(zi) is the formula >
otherwise; the formula β is the conjunction of the conjuncts of ψ without free
variables. The formula ϕj is equivalent to the formula ∃z2...∃zp

(
α ∧ ψ1(z1) ∧

... ∧ ψp(zp)
)
∧ ∃zp+1ψp+1(zp+1) ∧ ... ∧ ∃zkψk(zk) ∧ β. Notice that for each i,

the formula ∃ziψi(zi) is a DUF1-formula if ψi(zi) is.
Consider the formula γ := ∃z2...∃zp

(
α∧ψ1(z1)∧...∧ψp(zp)

)
. The formula α

is either equivalent to ⊥, or equivalent to a non-empty disjunction δ1 ∨ ...∨ δl,
where each δi denotes a conjunction over some uniform m-ary τχ-diagram.
(Notice that since α is quantifier-free, the equivalence checking can be done
effectively.) Assume first that α is equivalent to δ1 ∨ ... ∨ δl. Therefore the
formula γ is equivalent to the disjunction ∃z2...∃zp

(
δ1∧ψ1(z1)∧ ...∧ψp(zp)

)
∨

...∨∃z2...∃zp
(
δl∧ψ1(z1)∧ ...∧ψp(zp)

)
. Notice that the disjunct ∃z2...∃zp

(
δi∧

ψ1(z1) ∧ ... ∧ ψp(zp)
)

is a DUF1-formula if the formulae ψ1(z1), ..., ψp(zp) are;



Hella and Kuusisto 289

we may need to use the formation rule (iv) of DUF1 in addition to rule (iii) if
∃z2...∃zp

(
δi ∧ ψ1(z1) ∧ ... ∧ ψp(zp)

)
does not contain the free variable z1. In

the case α is equivalent to ⊥, then γ is equivalent to ⊥.
We have now discussed the case where ϕj is of the type ∃y2...∃yk

(
α ∧ ψ

)
,

where α is a non-empty conjunction of atoms and negated atoms of some
arity higher than one, and ψ is a non-empty conjunction of formulae with
at most one free variable. The case where ϕj is ∃y2...∃yk α, can be reduced
to the case already discussed by considering the formula ∃y2...∃yk

(
α ∧ >

)
.

Assume thus that ϕj is the formula ∃y2...∃yk ψ, where ψ is some conjunction
ψ1(y1) ∧ ... ∧ ψk(yk) ∧ β, where the formulae ψi(yi) have at most one free
variable, and β has no free variables. Now ϕj is equivalent to the formula
ψ1(y1) ∧ ∃y2ψ2(y2) ∧ ... ∧ ∃ykψk(yk) ∧ β. Each conjunct ∃yiψ1(yi) is a DUF1-
formula if ψi(yi) is.

All other cases the translation from UF1 to DUF1 are straightforward. 2

B Proofs for Section 4

Proof of Lemma 4.2. We establish the claim of the lemma by showing that

T,
(w, t)

x
|= ψtotal ∧ ψuniq ∧ ψlocal ∧ ψsub ∧ Pψ(x).

To show that T |= ψtotal , let
(
(u1, t1), ..., (uk, tk)

)
∈ (Dom(T))k, where

k ∈ {2, ...,M}. We need to show that
(
(u1, t1), ..., (uk, tk)

)
satisfies

Consδ(x1, ..., xk) for some δ ∈ ∆k. Consider the tuple (u1, ..., uk) ∈
Mk. Let η be the unique standard uniform k-ary Vψ-diagram η such that
(u1, ..., uk) ∈ ‖η‖M. Let p ∈ {2, ...,M}, p ≥ k. Let ρ ∈ ∆p. Let
f : {1, ..., p} → {1, ..., k} be a surjection, and assume that η ≤f ρ. Thus
(uf(1), ..., uf(p)) ∈ ‖ρ‖M. In order to conclude that T |= ψtotal , we need to

show that T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |= PreConsρ(xf(1), ..., xf(p)). Therefore we as-

sume that T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |= Pχ1

(xf(1)) ∧ ... ∧ Pχp(xf(p)). Thus we have

(M, uf(i)) |= χi for each i ∈ {1, ..., p}. As (uf(1), ..., uf(p)) ∈ ‖ρ‖M, we therefore

have uf(1) ∈ ‖〈ρ〉(χ1, ..., χp)‖M. Thus (uf(1), tf(1)) ∈ PT
〈ρ〉(χ1,...,χp), whence

T,

(
(u1,t1),...,(uk,tk)

)
(x1,...,xk) |= P〈ρ〉(χ1,...,χp)(xf(1)). Therefore T |= ψtotal .

It is immediate by the definition of the domain of T and the predicates PT
t ,

where t is a torus point, that T |= ψuniq .

To show that T |= ψlocal , assume T, (u,t)
x |= Localδ(x) for some k-

ary diagram δ ∈ ∆. Thus (u, ..., u)k ∈ ‖δ‖M. To show that T, (u,t)
x |=

PreConsδ(x, ..., x)k, let 〈δ〉(χ1, ..., χk) ∈ SUBψ and assume that T, (u,t)
x |=

Pχ1
(x) ∧ ... ∧ Pχk(x). Therefore u ∈ ‖χi‖M for each i ∈ {1, ..., k}, whence

u ∈ ‖〈δ〉(χ1, ..., χk)‖M. Thus (u, t) ∈ PT
〈δ〉(χ1,...,χk), as required.

The non-trivial part in proving that T |= ψsub involves showing that T |=
ψ〈δ〉(χ1,...,χk) for formulae of the type 〈δ〉(χ1, ..., χk). This follows directly by

Lemma 4.1, since PT
〈δ〉(χ1,...,χk) = ‖〈δ〉(χ1, ..., χk)‖M × Dom(T).
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Since (M, w) |= ψ and PT
ψ = ‖ψ‖M× Dom(T), we have T, (w,t)

x |= Pψ(x).2

Proof of Lemma 4.6. We establish the claim by induction on the structure
of α. For all atomic formulae S ∈ SUBψ, the claim follows directly from the
definition of the relations SB on tuples that span a singleton set. The cases
where α is of form ¬β or (β ∧ γ) are straightforward since A |= ψsub .

Define u1 := u and x1 := x. Assume that B, u1

x1
|= 〈δ〉(χ1, ..., χk), where

〈δ〉(χ1, ..., χk) ∈ SUBψ. Thus (u1, ..., uk) ∈ ‖δ‖B for some tuple (u1, ..., uk)
such that ui ∈ ‖χi‖B for each i ∈ {1, ..., k}. Now, for each i ∈ {1, ..., k}, we
have PA

χi = ‖χi‖B by the induction hypothesis, and therefore ui ∈ PA
χi . By

Lemma 4.5, we have A, (u1,...,uk)
(x1,...,xk) |= PreConsδ(x1, ..., xk). By the definition of

the formula PreConsδ(x1, ..., xk), we conclude that A, u1

x1
|= P〈δ〉(χ1,...,χk)(x1).

For the converse, assume A, u1

x1
|= P〈δ〉(χ1,...,χk)(x1). As A |= ψ〈δ〉(χ1,...,χk),

we have A, u1

x1
|= ∃x2...∃xk

(
Diagδ(x1, ..., xk) ∧ Pχ1

(x1) ∧ ... ∧ Pχk(xk)
)
.

Hence there exists some tuple (u1, ..., uk) such that ui ∈ PA
χi for each i and

A, (u1,...,uk)
(x1,...,xk) |= Diagδ(x1, ..., xk). By Lemma 4.4, we have (ui, ..., uk) ∈ ‖δ‖B.

As ‖χi‖B = PA
χi for each i by the induction hypothesis, we conclude that

(B, u1) |= 〈δ〉(χ1, ..., χk).
Assume first that (B, u) |= 〈E〉χ, where 〈E〉χ ∈ SUBψ. Thus (B, v) |= χ for

some v, whence A, vy |= Pχ(y) by the induction hypothesis. Thus A |= ∃yPχ(y).

As A |= ψsub , we have A, ux |= P〈E〉χ(x). Assume then that A, ux |= P〈E〉χ(x).
As A |= ψsub , we have A |= ∃yPχ(y), whence A, vy |= Pχ(y) for some v. By the

induction hypothesis, we have (B, v) |= χ, whence (B, u) |= 〈E〉χ. 2

C Arguments concerning undecidable extensions

We recall the tiling problem of the infinite grid N × N. A tile is a map t :
{R,L, T,B} → C, where C is a countably infinite set of colours. We use the
notation tX := t(X) for X ∈ {R,L, T,B}. Intuitively, tR, tL, tT and tB are
the colours of the right edge, left edge, top edge and bottom edge of the tile t.

Let T be a finite set of tiles. A T-tiling of N×N is a function f : N×N→ T
that satisfies the following horizontal and vertical tiling conditions:

(TH) For all i, j ∈ N, if f(i, j) = t and f(i+ 1, j) = t′, then tR = t′L.

(TV ) For all i, j ∈ N, if f(i, j) = t and f(i, j + 1) = t′, then tT = t′B .

Thus, f is a proper tiling iff the colors on the matching edges of any two
adjacent tiles coincide. The tiling problem for N× N asks whether for a finite
set T of tiles, there is a T-tiling of N×N. It is well known that this problem is
undecidable (Π0

1-complete). Using the problem, it is easy to prove the following.

Proposition C.1 The satisfiability problem of GF1 is Π0
1-complete.

Proof. Let τ = {H,V } be a vocabulary, where H and V are binary rela-
tion symbols. The infinite grid N × N can be represented by a τ -structure
G := (N × N, HG, V G), where HG := {((i, j), (i + 1, j)) | i, j ∈ N} and
V G := {((i, j), (i, j + 1)) | i, j ∈ N}. Let Γ be the conjunction of the
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three τ -sentences ηH := ∀x∃y H(x, y), ηV := ∀x∃y V (x, y), and ηCom :=
∀x∀y∀z∀w

(
(H(x, y) ∧ V (x, z) ∧ H(z, w)) → V (y, w)

)
. It is easy to see that

ηH , ηV and ηCom are in GF1.
It is straightforward to show that if M is a τ -model such that M |= Γ, then

there exists a homomorphism h : G→M.
Let T be a set of tiles. We simulate tiles by unary relation symbols Pt

for each t ∈ T. We denote the corresponding vocabulary τ ∪ {Pt | t ∈ T}
by σT. The tiling conditions (TH) and (TV ) can be expressed by the σT-
sentences ψH := ∀x∀y

∧
t,t′∈T, tR 6=t′L

(Pt(x) ∧ Pt′(y)) → ¬H(x, y) and ψV :=

∀x∀y
∧
t,t′∈T, tT 6=t′B

(Pt(x) ∧ Pt′(y)) → ¬V (x, y). Let ΨT := ψH ∧ ψV ∧ ψpart ,

where ψpart is a sentence saying that every element is in exactly one of the
relations Pt, t ∈ T. Clearly ψpart can be expressed in GF1.

It is straightforward to show that the sentence Γ ∧ ΨT is satisfiable if and
only if N×N is T-tilable. Since the sentence Γ∧ΨT is in GF1 for each finite set
T of tiles, the tiling problem is effectively reducible to the satisfiability problem
of GF1. Hence the satisfiability problem is Π0

1-hard. On the other hand, GF1

is a fragment of first-order logic, whence its satisfiability problem is in Π0
1. 2

Let τ+ = {H+, V+, S} be a vocabulary, where H+ and V+ are ternary
relation symbols and S is a binary relation symbol. We will represent the

infinite grid N×N as a τ+-structure G+ := (N, HG+

+ , V
G+

+ , SG+), where H
G+

+ :=

{(i, i + 1, j) | i, j ∈ N}, V G+

+ := {(i, j, j + 1) | i, j ∈ N}, and S
G+

+ := {(i, i +

1) | i ∈ N}. Notice that (u, v, w) ∈ V
G+

+ iff (u, v) connects to (u,w) via the
vertical successor V G of the standard Cartesian grid G defined in the proof

of Proposition C.1. On the other hand, (u, v, w) ∈ HG+

+ iff
(
(u,w), (v, w)

)
∈

HG. We shall next form a τ+-sentence Γ+ of SUF2 such that G+ |= Γ+, and
there is a homomorphism from G+ to any model of Γ+. Define Γ+ to be the
conjunction of the formulae θS := ∀x∃y S(x, y), θH := ∀x1∀x2 (S(x1, x2) →
∀y H+(x1, x2, y)), and θV := ∀y1∀y2 (S(y1, y2)→ ∀xV+(x, y1, y2)).

Lemma C.2 If M is a τ+-model such that M |= Γ+, then there exists a ho-
momorphism h : G+ →M.

Proof. We define a function h : N → M by recursion as follows. Choose an
arbitrary point a0 ∈ M , and set h(0) := a0. Assume that h(i) = a has been
defined. Since M |= θS , there is b ∈M such that (a, b) ∈ SM. Define h(i+1) :=
b. Observe first that (h(i), h(i + 1)) ∈ SM for each i ∈ N. Furthermore, since
M |= θH ∧ θV , we have (h(i), h(i+ 1), h(j)) ∈ HM

+ and (h(i), h(j), h(j+ 1)) ∈
VM

+ for all i, j ∈ N. Thus h is a homomorphism G+ → A. 2

Theorem C.3 The satisfiability problem of SUF2 is Π0
1-complete.

Proof. By Lemma C.2, we know that if M is a τ+-model such that M |= Γ+,
then there exists a homomorphism h : G+ →M. (We also have G+ |= Γ+.)

Let T be a set of tiles. This time we simulate tiles by fresh ternary relation
symbols PX,t, where X ∈ {R,L, T,B} and t ∈ T. Let ρT := τ+ ∪ {PX,t |X ∈
{R,L, T,B}, t ∈ T} be the corresponding vocabulary.
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The idea here is that if (a, b, c) ∈ PR,t and (a, b, c) ∈ PL,t′ , then the right
edge of (a, c) is coloured with tR and the left edge of (b, c) is coloured with

t′L; recall that (a, b, c) ∈ H
G+

+ means that
(
(a, c), (b, c)

)
∈ HG. Similarly, if

(a, b, c) ∈ PT,t and (a, b, c) ∈ PB,t′ , then the top edge of (a, b) is coloured with
tT and the bottom edge of (a, c) is coloured with t′B . Thus, we can express the
tiling conditions (TH) and (TV ) by the following SUF2-sentences:

ϕH := ∀x1∀x2∀y
∧

t,t′∈T, tR 6=t′L((
PR,t(x1, x2, y) ∧ PL,t′(x1, x2, y)

)
→ ¬H+(x1, x2, y)

)
,

ϕV := ∀x∀y1∀y2

∧
t,t′∈T, tT 6=t′B((

PT,t(x, y1, y2) ∧ PB,t′(x, y1, y2)
)
→ ¬V+(x, y1, y2)

)
.

We also need a sentence ϕprop stating that each pair (a, b) is tiled by
exactly one t ∈ T. This amounts to stating, firstly, that the interpre-
tation of each symbol PR,t depends only on the first and the last vari-
able:

∧
t∈T ∀x1∀y (∃x2 PR,t(x1, x2, y) → ∀x2 PR,t(x1, x2, y)), and analogously

for PL,t, PT,t and PB,t. Secondly, the four colors of each pair correspond to the
same tile, meaning that

∧
t∈T ∀x1∀y (∃x2 PR,t(x1, x2, y) ↔ ∃x2 PL,t(x2, x1, y))

holds, and similar conditions for the other pairs (PX,t, PY,t) hold. Thirdly, for
each X ∈ {L,R,B, T}, every triple is in exactly one of the relations PX,t, t ∈ T.

Clearly there is such a sentence ϕprop in SUF2. Let ΦT be the conjunction
of the sentences ϕH , ϕV and ϕprop . Thus the sentence Γ+ ∧ ΦT is satisfiable if
and only if N×N is T-tilable. Hence we conclude that SUF2 is Π0

1-complete.2

D Expressivity

Theorem D.1 UF1 is incomparable in expressivity with both two-variable logic
with counting (FOC2) and guarded negation fragment (GNFO).

Proof. The expressivity of FOC2 is seriously limited when it comes to proper-
ties of relations of arities greater than two. It is easy to show that for example
the UF1-sentence ∃x∃y∃z R(x, y, z) is not expressible in FOC2. Thus UF1 is
not contained in FOC2.

It is straightforward to show by using the bisimulation for GNFO, provided
in [2], that the UF1-sentence ∃x∃y ¬R(x, y) is not expressible in GNFO. This
follows from the fact that structures

(
{a}, {(a, a)}

)
and

(
{a, b}, {(a, a), (b, b)}

)
are bisimilar in the sense of GNFO. Thus UF1 is not contained in GNFO.

The FO2-sentence ∀x∀y(x = y) cannot be expressed in UF1. This can
be seen (for example) by observing that the two directions of our decidability
proof together entail that satisfiable sentences of the equality-free logic UF1

can always be satisfied in a larger model. Thus UF1 does not contain FO2.
It follows immediately from the definition of UF1 that the equality-free frag-

ment of FO2 is contained in UF1. In fact, it is easy to prove that in restriction
to models with relation symbols of arities at most two, the expressivities of
UF1 and the identity-free fragment of FO2 coincide. (Consider for example the
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translation from UF1 to MUF1 in the case of such vocabularies.)
To see that UF1 does not contain GNFO, consider the GNFO-sentence

∃x∃y∃z(Rxy ∧ Ryz ∧ Rzx). It is easy to show (by a pebble game argument,
see [12]), that this property is not expressible in FO2. As UF1 is contained
in FO2 when attention is restricted to models with only binary relations, UF1

does not contain GNFO. 2
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[2] Bárány, V., B. ten Cate and L. Segoufin, Guarded negation, in: Proceedings of Automata,
Languages and Programming - 38th International Colloquium, (ICALP), Part II (2011),
pp. 356–367.

[3] Benaim, S., M. Benedikt, W. Charatonik, E. Kieroński, R. Lenhardt, F. Mazowiecki and
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