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Provability Logic

Sam J. van Gool 1

Mathematical Institute, University of Bern, Switzerland

Abstract

We give a construction of finitely generated free algebras for Gödel-Löb provability
logic, GL. On the semantic side, this construction yields a notion of canonical graded
model for GL and a syntactic definition of those normal forms which are consistent
with GL. Our two main techniques are incremental constructions of free algebras
and finite duality for partial modal algebras. In order to apply these techniques to
GL, we use a rule-based formulation of the logic GL by Avron (which we simplify
slightly), and the corresponding semantic characterization that was recently obtained
by Bezhanishvili and Ghilardi.
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1 Introduction

The provability logic GL is the axiomatic extension of the basic modal logic
K by the Gödel-Löb axiom 2(2p → p) → 2p. The intended interpretation
of the modal operator 2 in GL is “it is provable in T that . . . ”, where T is
a sufficiently strong formal theory, such as, for example, Peano arithmetic. A
classical theorem of Solovay [19] shows that, indeed, GL is exactly the logic of
provability of Peano arithmetic. From a modal logic perspective, the logic GL
is interesting because, on the one hand, it has reasonably nice model-theoretic
properties (notably, GL is complete with respect to the class of finite irreflexive
transitive frames), but on the other hand it fails to be canonical, that is, the
canonical model of the logic GL does not validate the Gödel-Löb axiom.
The situation with normal forms for GL is similarly subtle: Boolos [7] gave
normal forms for the fragment of GL-formulas containing no propositional vari-
ables, but in [8] Boolos showed that the same method does not apply to the

1 The author would like to thank Nick Bezhanishvili, Mai Gehrke, and Silvio Ghilardi for
many interesting and helpful discussions on the topic of this paper. The research reported
in this paper was performed during a research stay at Université Paris 7 and INRIA, hosted
by Paul-André Melliès, to whom the author is also grateful for providing the inspiration for
the “graded” view in Section 6 of this paper. Finally, the author would like to thank the
anonymous referees for their many useful suggestions.
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fragment of GL-formulas in n variables for n > 0. This result has sometimes
been cited in the literature as saying that no normal forms exist for GL on n
variables, but this is not what Boolos proved, nor does it seem to be what he
intended to claim 2 . Indeed, one of the contributions of this paper is to give
an explicit construction of normal forms for GL on an arbitrary finite number
of variables.
It has been known since the work of Fine [10] (which was put into algebraic
perspective in [1] and [12]) that any modal formula of modal degree 3 n on k
variables {p1, . . . , pk} is equivalent in K to a finite (possibly empty) disjunction
of normal forms of degree n. Here, the normal forms of degree 0 are the
formulas of the form

∧
i∈T pi ∧

∧
j 6∈T ¬pj , for T ⊆ {p1, . . . , pk}, and normal

forms of degree n+ 1 are formulas of the form

φ ∧∇Ψ, (1)

where φ is a normal form of degree 0, Ψ is a finite set of normal forms of degree

n, and∇Ψ abbreviates 2
(∨

ψ∈Ψ ψ
)
∧
(∧

ψ∈Ψ 3ψ
)

, a notation from coalgebraic

logic [16] (we will make some remarks on the connection with coalgebraic logic
in the conclusion of this paper).
In the modal logic K, each of the normal forms (1) is satisfiable. However,
this is clearly no longer the case in GL. In this paper we give a bottom-up
construction of the free GL-algebra (Section 5), and from the construction we
extract a bottom-up definition of the normal forms that are consistent with
GL (Definition 6.3). In Section 6, we also develop a notion of graded model for
GL, and construct a canonical graded model for GL.

Let us now discuss the methods of this paper in some more detail. Recall
that a modal algebra is a tuple (A,∨,∧,¬, 0, 1,2) where (A,∨,∧,¬, 0, 1) is a
Boolean algebra and 2 : A → A is a unary operation on A which preserves ∧
and 1. As is well-known, the variety of modal algebras is the algebraization of
the basic modal logic K, in the sense that a formula φ is a tautology of K if,
and only if, the equation φ = 1 is valid in every modal algebra. By definition,
a GL-algebra 4 is a modal algebra in which the equation 2(2a → a) ≤ 2a is
valid. The variety of GL-algebras algebraizes the logic GL. The free GL-algebra
over variables p1, . . . , pk is the GL-algebra consisting of GL-equivalence classes
of modal formulas using variables from p1, . . . , pk. We shall denote this algebra
by FGL(k).
The notion of modal degree allows one to approximate a finitely generated
modal algebra by an infinite chain of finite algebras, in each of which the

2 Note in particular that, in the title of [8], the word “certain” is under the scope of a negated
existential quantifier.
3 Recall that the modal degree of a modal formula is the maximum length of a string of
nested occurrences of the modal operator 2.
4 These algebras are the same (although axiomatized slightly differently) as the algebras
introduced by Magari [15] and are also called Magari algebras or diagonalizable algebras in
the literature.
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modal operator is partially defined. Concretely, if A is a modal algebra with
generators a1, . . . , ak, let

An := {φA(a1, . . . , ak) | φ(p1, . . . , pk) an k-variable formula of degree ≤ n}.
(2)

Then A0 ⊆ A1 ⊆ · · · is an increasing chain of finite Boolean subalgebras of A,
and A =

⋃
n≥0An, since A is generated by a1, . . . , ak. Moreover, the operation

2 on the modal algebra A restricts, for each n ≥ 0, to an operation 2n : An →
An+1. The tuple (An+1, An,2n) is an example of a partial modal algebra (cf.
Definition 2.1 below). Ghilardi’s pioneering idea in [12], the germ of which
appeared earlier in unpublished lectures by Abramsky [1], was to describe the
increasing chain of Boolean algebras A0, A1, . . . and the operations 2n between
them from the bottom up. That is, for many classes V of modal algebras, it is
possible to describe a functor F on partial modal algebras with the property
that, if A is a finitely generated modal algebra in V and (A1, A0,20) is the first
algebra in the chain described above, then the nth such algebra is (isomorphic
to) (FV )n(A1, A0,20). In this case, one obtains an incremental, bottom-up
construction for algebras in the class V , by starting from a partial modal algebra
and taking an appropriate colimit of the chain of algebras (FV )n(A1, A0,20).
In Section 4, we give the definition of such a functor F in the case where V is the
class of GL-algebras, and apply it to the particular case of the finitely generated
free algebras FGL(k). Definition 4.1 is an instance of the general definition in [9,
Section 2] of a free image-total functor associated to a set of quasi-equations
of degree ≤ 1. It is important to note that the functor F depends on the
particular axiomatization of the class V , also see the conclusion.
The free image-total functor F is often most conveniently described using
duality. Dual to any partial modal algebra is a partial frame (called “q-frame”
in [9]), which consists of a set equipped with an equivalence relation ∼ and a
Kripke accessibility relation R which respects ∼, cf. Definition 3.1 below for
the precise definition. Under this duality, the construction F on partial modal
algebras corresponds to a dual construction G on partial frames. Since the
construction that underlies F is a pushout in the category of Boolean algebras
([5, Prop. 5]), i.e., a quotient of a coproduct, the construction that underlies
G is a pullback in the category of sets, i.e., a subset of a product. As a result,
the action on objects of the functor G is usually easier to identify than that
of the functor F . Indeed, in Definition 4.4 we will give a direct combinatorial
description of the functor G.

Outline of the paper. Section 2 contains the necessary algebraic definitions,
notably, the definition of partial GL-algebra. In Section 3 we recall duality
for partial modal algebras, and specialize it to the case of partial GL-algebras.
In Section 4 we define the free image-total functor for GL and characterize its
dual. In Section 5 we apply the functor F to obtain a construction of the free
finitely generated GL-algebra, and in Section 6 we use G to obtain a canonical
graded model for GL.
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2 Partial GL-algebras

In this paper, we make extensive use of a generalization of modal algebras,
namely partial modal algebras.

Definition 2.1 A partial modal algebra is a tuple (A,B,2), where A is a
Boolean algebra, B is a Boolean subalgebra of A, and 2 : B → A is a function
which preserves ∧ and 1. The algebra A is called the underlying Boolean
algebra of (A,B,2). A homomorphism from a partial modal algebra (A,B,2)
to a partial modal algebra (A′, B′,2′) is a map h : A→ A′ such that h(B) ⊆ B′
and h(2b) = 2′h(b) for all b ∈ B. A homomorphism h is an isomorphism if h
is bijective and h(B) = B′. A congruence on a partial modal algebra (A,B,2)
is a Boolean algebra congruence θ on A such that moreover, for all b, b′ ∈ B, if
bθb′, then 2bθ2b′. We denote by (A/θ,B/θ,2/θ) the quotient of (A,B,2) by
θ. Note that, for any congruence θ, (A/θ,B/θ,2/θ) is again a partial modal
algebra. A partial modal algebra (A,B,2) is called total if B = A.

Remark 2.2 Note that the category of partial modal algebras with homo-
morphisms is equivalent to the category whose objects are diagrams of shape

B A
i

2
where A, B are Boolean algebras, i is an injective Boolean homo-

morphism, and 2 is a meet-semilattice morphism, and whose morphisms are
given by the obvious commuting diagrams. Therefore, the category of partial
modal algebras is equivalent to a full subcategory of the category of one-step
modal algebras introduced in [5].

Example 2.3 Let (A,2) be a finitely generated modal algebra, with genera-
tors a1, . . . , ak. Let A0 be the Boolean algebra generated by a1, . . . , ak, and
let A1 be the Boolean algebra generated by a1, . . . , ak,2a1, . . . ,2ak. The op-
eration 2 on C restricts to an operation 2 : A0 → A1, and it follows that
(A0, A1,2) is a partial modal algebra. Repeating this process, by taking all
elements of A1 as set of generators in the next step, one obtains, after n repe-
titions, the partial modal algebra (An+1, An,2n) defined in equation (2) in the
introduction.
In particular, if L is a normal modal logic, we may take for A the k-variable
Lindenbaum algebra for L, i.e., the modal algebra of L-equivalence classes of
modal formulas in variables c1, . . . , ck. In this case, the partial modal algebras
(An+1, An,2) defined in the previous paragraph are the partial modal algebras
of L-equivalence classes of k-variable modal formulas of degree at most n+ 1.

We now identify a subclass V of the class of partial modal algebras such that
the total algebras in V are exactly the GL-algebras. There is a choice to be
made here: several such varieties V exist, and not all of them are suitable for
our purposes (also cf. the conclusion).

Definition 2.4 A partial modal algebra (A,B,2) is a partial GL-algebra if,
for all a, b ∈ B:

if b ≤ 2a→ a then 2b ≤ 2a. (3)
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The proof of the following fact is a direct application of a procedure which is
known in the literature as Ackermann’s lemma, or flattening.

Lemma 2.5 Let (A,2) be a modal algebra. The partial modal algebra (A,A,2)
is a partial GL-algebra if, and only if, (A,2) is a GL-algebra.

Proof. If (3) holds in (A,A,2), then, for any a ∈ A, we can instantiate (3)
with b := 2a → a to obtain 2(2a → a) ≤ 2a. Conversely, if (A,2) is a
GL-algebra and a, b ∈ A are such that b ≤ 2a→ a, then we get

2b ≤ 2(2a→ a) ≤ 2a,

where we have used that 2 : A → A is order-preserving and that (A,2) is a
GL-algebra. 2

Remark 2.6 Definition 2.4 was inspired by [3, Section 5], where a rule-based
formulation for GL due to Avron [2] was used. Avron’s rule, when translated
to a quasi-equation, says that, for all a, b ∈ B,

if b ∧2b ≤ 2a→ a then 2b ≤ 2a. (4)

Avron [2] used the rule (4) to obtain a sequent calculus for GL which has cut-
elimination, and used it to prove Kripke completeness of GL. It is possible
to prove syntactically that the quasi-equations (3) and (4) are equivalent for
any partial modal algebra. The reason why we used (3) rather than (4) in
Definition 2.4 is that (3) is simply a flattening of the usual GL-axiom, while
showing the equivalence of (4) with the usual GL-axiom requires some ingenuity.

3 Duality for partial GL-algebras

We now recall the facts about duality for finite partial modal algebras that we
need in this paper, and we recall how this duality specializes to finite partial
GL-algebras. For more details about duality for finite partial modal algebras,
cf., e.g., [9, Sec. 4] or [5, Sec. 3.2].

Definition 3.1 A partial frame 5 is a tuple (X,∼, R), where X is a set, ∼ is
an equivalence relation on X, and R ⊆ X ×X is a relation such that xRy ∼ y′
implies xRy′. A bounded morphism from a partial frame (X,∼X , R) to a partial
frame (Y,∼Y , S) is a function f from X to Y such that x ∼X x′ implies
f(x) ∼Y f(x′), and f(x)Sy if, and only if, there exists x′ ∈ X such that xRx′

and f(x′) ∼Y y. A partial generated subframe of a partial frame (X,∼, R)
is a partial frame (Y,≈, Q) such that Y ⊆ X, the relations ≈ and Q are the
restrictions to Y of the relations ∼ and R, respectively, and, for all y ∈ Y and
x ∈ X, if yRx, then there exists x′ ∈ Y such that x′ ∼ x. A partial frame is
called total if the equivalence relation ∼ is the diagonal ∆ = {(x, x) | x ∈ X}.

5 These were called q-frames in [9], and a generalization of these were called one-step frames
in [5].
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Notation. In a partial frame (X,∼, R), for x ∈ X, we use the notation R(x)
for the set {y ∈ X | xRy} and [x]∼ for the ∼-equivalence class of y.

For any partial frame (X,∼, R), we define its dual partial modal algebra
(A,B,2) by

A := P(X),

B := P∼(X) = {b ∈ P(X) | if x ∈ b and x ∼ x′ then x′ ∈ b},
for b ∈ B, 2b := {x ∈ X | if xRy then y ∈ b}.

Note that indeed (A,B,2) is a partial modal algebra. For a bounded morphism
f : (X,∼X , R)→ (Y,∼Y , S), if (A,B,2), (A′, B′,2′) are the partial modal al-
gebras dual to X and Y respectively, we define a homomorphism h : A′ → A
by h(c) := f−1(c). Note that h is indeed a homomorphism of partial modal
algebras. Moreover, these assignments define a contravariant functor from the
category of partial frames to the category of partial modal algebras. When
restricted to finite partial frames, this functor becomes part of a dual equiva-
lence, as is obvious by combining Remark 2.2 with the well-known fact that the
category of finite Kripke frames is dually equivalent to the category of finite
modal algebras.

Theorem 3.2 (Duality for finite partial modal algebras) The category
of finite partial frames is dually equivalent to the category of finite partial modal
algebras.

Proof. (Sketch) The functor from finite partial frames to finite partial modal
algebras takes a finite partial frame to its (finite) dual partial modal algebra.
The functor in the other direction takes a finite partial modal algebra to its
set of atoms, equipped with the appropriate structure of a partial frame. See
Theorem A.1 in the appendix for more details. 2

Theorem 3.2 in particular implies that epimorphisms in the category of finite
partial modal algebras dually correspond to monomorphisms of finite partial
frames, and vice versa. We formulate these facts in some detail in the following
two corollaries.

Corollary 3.3 Let (A,B,2) be a finite partial modal algebra with dual finite
partial frame (X,∼, R). There is a Galois connection between P(A × A) and
P(X), given by the assignments:

E ∈ P(A×A) 7→ YE := {x ∈ X | ∀(a, b) ∈ E : x ≤ a ⇐⇒ x ≤ b}
Y ∈ P(X) 7→ θY := {(a, b) ∈ A×A | ∀y ∈ Y : y ≤ a ⇐⇒ y ≤ b}.

This Galois connection restricts to an order-reversing isomorphism between the
poset of congruences on A and the poset of partial generated subframes of X,
both ordered by inclusion. Moreover, for any E ∈ P(A × A), the congruence
θYE

is the smallest congruence containing E.

Corollary 3.4 Let f : (X,∼X , R) → (Y,∼Y , S) be a bounded morphism be-
tween partial frames and let h : (A′, B′,2′)→ (A,B,2) be the homomorphism
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of partial modal algebras dual to it. Then f is surjective if, and only if, h is
injective.

We now recall some constructions and facts about partial modal algebras that
will be used later in this paper. 6 We first define, given a finite Boolean algebra
A, a partial modal algebra (A+V (A), A,2), and then describe its dual. Recall
that the coproduct of any two Boolean algebras A and B exists, and can be
characterized as the (up to isomorphism unique) Boolean algebra A+B which
contains A and B as subalgebras and such that any pair of homomorphisms
(A→ C, B → C) factors uniquely through A+B.
In the rest of this section, let A and B be arbitrary finite Boolean algebras.

Fact 3.5 The dual of A+B is the Cartesian product At(A)× At(B) and the
Boolean algebra A+B is isomorphic to P(At(A)×At(B)).

The Vietoris algebra V (A) over a finite Boolean algebra A is defined to be the
algebra of Boolean combinations of formal elements 2a, for a ∈ A, quotiented
by the equalities 21 = 1 and 2(a ∧ b) = 2a ∧2b.

Fact 3.6 The dual of V (A) is P(At(A)) and the Boolean algebra V (A) is iso-
morphic to P(P(At(A))).

Combining the above two constructions, for any Boolean algebra A we can form
a partial modal algebra (A+ V (A), A,2), where 2 sends an element a ∈ A to
2a ∈ V (A).

Fact 3.7 The dual of A+V (A) is X×P(X), where X := At(A) and A+V (A)
is isomorphic to P(X × P(X)). The subalgebra A of A + V (A) is dual to the
equivalence relation ≈ on X × P(X) defined by (x, T ) ≈ (y, S) if, and only if,
x = y. The dual of the operation 2 : A → A + V (A) is the relation Q on
X × P(X) defined by (x, T )Q(y, S) if, and only if, y ∈ T .

We end this section by specializing the duality in Theorem 3.2 to finite partial
GL-algebras. The following definition identifies the objects in the category of
finite partial frames that are dual to finite partial GL-algebras.

Definition 3.8 A partial GL-frame is a partial frame (X,∼, R) such that, for
any x, y ∈ X, if xRy, then there exists y′ ∼ y such that R(y′) ( R(x).

It is easy (but not entirely trivial) to show that the finite partial GL-frames
of the form (X,=, R) are exactly the frames for which R is irreflexive and
transitive. This also follows from Lemma 2.5 and Proposition 3.9 below.
The condition in Definition 3.8 was first derived in [4, Section 9.2] using general
correspondence theory for one-step algebras. We give a direct proof of the
correspondence between finite partial GL-algebras and finite partial GL-frames.

Proposition 3.9 Let (X,∼, R) be a finite partial frame with dual partial modal
algebra (A,B,2). The following are equivalent:

6 The proofs of the well-known Facts 3.5–3.7, which amount to an algebraic explanation of
Fine’s normal forms (1), are given in the appendix (Facts A.2–A.4).
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(i) (A,B,2) is a partial GL-algebra;

(ii) (X,∼, R) is a partial GL-frame.

Proof. First suppose that (A,B,2) is a partial GL-algebra, and let x, y ∈ X
with xRy. Define b := R(x) and a := R(x) \ [y]∼. Note that x ∈ 2b, but
x 6∈ 2a, since xRy and y 6∈ a. Thus, 2b � 2a, and since (A,B,2) is a partial
GL-algebra we get that b � 2a→ a. Pick y′ ∈ b such that y′ ∈ 2a and y′ 6∈ a.
We then have y′ ∈ b \ a = [y]∼, and, since y′ ∈ 2a, we get R(y′) ⊆ a ( R(x).
Conversely, assume that (X,∼, R) is a partial GL-frame, and let a, b ∈ B be
such that b ≤ 2a → a. Reasoning towards a contradiction, suppose that
2b � 2a.
Pick x0 ∈ 2b \2a. Since x0 6∈ 2a, pick x′1 ∈ X with x0Rx

′
1 and x′1 6∈ a. Since

(X,∼, R) is a partial GL-frame, pick x1 ∼ x′1 such that R(x1) ( R(x0). Since
x0Rx

′
1 ∼ x1, we have x0Rx1. Therefore, since x0 ∈ 2b, we have x1 ∈ b. Using

the assumption b ≤ 2a→ a, we get that x1 ∈ 2a→ a. Since a ∈ B = P∼(X),
from x′1 6∈ a and x′1 ∼ x1 we get x1 6∈ a. Thus, since x1 ∈ 2a → a, we must
have x1 6∈ 2a. Also, since R(x1) ⊆ R(x0) and x0 ∈ 2b, we have x1 ∈ 2b.
In the preceding paragraph, starting from a point x0 ∈ 2b \ 2a, we have
constructed a point x1 ∈ 2b \ 2a such that R(x1) ( R(x0). Repeating this
argument at most n = |R(x0)| times, we will obtain a point xn with xn 6∈ 2a,
but R(xn) = ∅, which is the desired contradiction. 2

Combining Proposition 3.9 with Theorem 3.2, we see that the category of
finite partial GL-algebras is dually equivalent to the category of finite partial
GL-frames.

4 The free image-total GL-algebra and its dual

In this section, we will apply the construction of the free image-total algebra for
a variety of partial modal algebras [9, Section 3] to the particular case of partial
GL-algebras. The idea is to construct, given a partial GL-algebra (A,B,2), in
which 2a is only defined for a ∈ B, a larger partial GL-algebra in which the
value of 2a is defined for all a ∈ A. To this end, we first build a partial modal
algebra which consists of all Boolean combinations of elements from A with
formal elements ‘2a’ for all a ∈ A. Next, we take the largest possible quotient
of this partial modal algebra which is a partial GL-algebra. A crucial fact, to
be proved in Theorem 4.7 below, is that this quotient does not identify any
elements from the original partial GL-algebra (A,B,2).

Definition 4.1 Let (A,B,2) be a partial modal algebra. Let θ be the smallest
congruence on the partial modal algebra (A+V (A), A,�) 7 such that θ contains
E := {(2b,�b) | b ∈ B} and the quotient by θ is a partial GL-algebra. Let
F (A,B,2) be the partial GL-algebra ((A + V (A))/θ,A/θ,�/θ), and let i be
the natural homomorphism (A,B,2) → F (A,B,2) which sends a ∈ A to
[a]θ ∈ (A+ V (A))/θ.

7 We use the notation � to distinguish the formal box operation A → A + V (A) from the
already existing box operation B → A.
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The following proposition says that F (A,B,2) defined in the above definition
is the free image-total GL-algebra over (A,B,2), cf. [9, Definition 2.10].

Proposition 4.2 Let (A,B,2) be a partial modal algebra. For any homomor-
phism h : (A,B,2)→ (C,D,2) such that (C,D,2) is a partial GL-algebra and
h(A) ⊆ D, there exists a unique homomorphism h̄ : F (A,B,2) → (C,D,2)
such that h̄ ◦ i = h.

Proof. This is a special case of [9, Lemma 3.12]. 2

Our next aim is to directly describe the dual of the construction F in Def-
inition 4.1, by giving a construction which associates to any finite partial
frame (X,∼, R) a partial GL-frame G(X,∼, R) and a bounded morphism
p : G(X,∼, R)→ (X,∼, R). Recall from Fact 3.7 that the dual of the construc-
tion (A,B,2) 7→ (A + V (A), A,�) is (X,∼, R) 7→ (X × P(X),≈, Q). Since
F (A,B,2) is a certain quotient of (A+ V (A), A,�), we have that G(X,∼, R)
is a certain partial generated subframe of (X ×P(X),≈, Q), by Corollary 3.3.
We now give a definition which will be seen to characterize exactly which points
are in G(X,∼, R).

Definition 4.3 Let (X,∼, R) be a finite partial frame. An element (x, T ) ∈
X ×P(X) will be called GL-suitable 8 if R(x) = [T ]∼ and, for any y ∈ T , there
exists S ( T such that (y, S) is GL-suitable.

Note that Definition 4.3 is recursive: in order to determine whether (x, T ) is
GL-suitable, one first needs to know whether (y, S) is GL-suitable for y ∈ T
and S ( T . The recursion terminates: for any x ∈ X, the element (x, ∅) is
GL-suitable if, and only if, R(x) = ∅.

Definition 4.4 Let (X,∼, R) be a finite partial frame. Let G(X,∼, R) be the
partial frame (Y,≈, Q) defined by:

Y := {(x, T ) ∈ X × P(X) | (x, T ) is GL-suitable},
(x, T ) ≈ (y, S) ⇐⇒ x = y,

(x, T )Q(y, S) ⇐⇒ y ∈ T.

Proposition 4.5 Let (X,∼, R) be a finite partial frame with dual partial modal
algebra (A,B,2). Then the partial frame G(X,∼, R) is dual to the partial GL-
algebra F (A,B,2).

Proof. By Fact 3.7, (A+V (A), A,�) is dual to (X×P(X),≈, Q). Let θ be the
congruence from Definition 4.1; by definition, F (A,B,2) is the quotient of (A+
V (A), A,�) by θ. Combining Corollary 3.3 and Proposition 3.9, this quotient
is dual to the largest partial generated sub-GL-frame of (X ×P(X),≈, Q) that
is contained in the subset YE ⊆ X corresponding to E = {(2b,�b) | b ∈ B}.
Therefore, we need to prove the following two properties for G(X,∼, R) = (Y,≈
, Q) defined in Definition 4.4:

8 Our terminology is inspired by terms such as “K4-suitable”, as used in [10].
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(i) The partial frame (Y,≈, Q) is a partial generated subframe of the partial
frame (X × P(X),≈, Q), is a partial GL-frame, and is contained in YE .

(ii) If Z ⊆ X ×P(X) is such that (Z,≈, Q) is a partial generated subframe of
the partial frame (X×P(X),≈, Q), is a partial GL-frame, and is contained
in YE , then Z ⊆ Y .

For (i), first note that (Y,≈, Q) is a partial generated subframe of X × P(X):
if (x, T ) ∈ Y and y ∈ T , then there exists S with (y, S) ∈ Y , by GL-suitability
of (x, T ). To see that (Y,≈, Q) is a partial GL-frame (Definition 3.8), let
(x, T ), (y, S) ∈ Y with (x, T )Q(y, S), i.e., y ∈ T . Since (x, T ) is GL-suitable,
there exists S′ ( T such that (y, S′) is GL-suitable. Now (y, S) ≈ (y, S′), and
Q((y, S′)) ( Q((x, T )).
We now prove that (Y,≈, Q) satisfies all equalities in E. Note first that, for
b ∈ B and (x, T ) ∈ X × P(X), we have (x, T ) ∈ �b if, and only if, T ⊆ b, and
(x, T ) ∈ 2b if, and only if, R(x) ⊆ b. Hence, a pair (x, T ) ∈ X ×P(X) satisfies
an equality (2b,�b) ∈ E iff T ⊆ b ⇐⇒ R(x) ⊆ b. Now, since the elements of
B are the ∼-saturated subsets, it easily follows that a pair (x, T ) satisfies all
equalities in E iff [T ]∼ = R(x) (cf. [9, Lemma 5.11]).
To prove (ii), let Z ⊆ X × P(X) be as in the assumptions of (ii). We need to
show that all elements in Z are GL-suitable. First of all, by the argument in
the previous paragraph, since Z satisfies all equalities in E, any pair (x, T ) ∈ Z
satisfies [T ]∼ = R(x). Now, since X is finite, it suffices to prove the following
statement for all n:

For any (x, T ) ∈ X × P(X) such that |T | ≤ n, if (x, T ) ∈ Z then (x, T ) ∈ Y.
(Hn)

To prove (H0), note that if (x, ∅) ∈ Z then R(x) = ∅, so (x, ∅) is GL-suitable.
Now assume (Hn) holds. Let (x, T ) ∈ Z with |T | = n + 1. To prove that
(x, T ) is GL-suitable, we have already noted that [T ]∼ = R(x). Let y ∈ T be
arbitrary. Since Z is a partial generated subframe of X × P(X), there exists
S such that (y, S) ∈ Z. Since Z is a partial GL-frame and (x, T )Q(y, S), there
exists (y, S′) ∈ Z such that S′ ( T . By the induction hypothesis (Hn) applied
to (y, S′), we see that (y, S′) is GL-suitable. Thus, (x, T ) is GL-suitable, since
y was arbitrary. This concludes the proof of (Hn+1). 2

Note that, by Proposition 4.5, the homomorphism i : (A,B,2) → F (A,B,2)
is dual to the function p : G(X,∼, R)→ (X,∼, R) which sends (x, T ) to x.

Proposition 4.6 Let (X,∼, R) be a finite partial GL-frame. Then the bounded
morphism p : G(X,∼, R)→ (X,∼, R) is surjective.

Proof. We will prove that, for any x ∈ X, the pair (x, Tx) is in G(X,∼, R),
where

Tx := {y | xRy and R(y) ( R(x)}.
To this end, we use induction on the number of elements in R(x). Specifically,
we will show that, for each n,

For any x ∈ X such that |R(x)| ≤ n, (x, Tx) is GL-suitable. (In)
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To prove (I0), note that if R(x) = ∅ then Tx = ∅ and (x, ∅) is GL-suitable. Now
assume (In) holds. Let x ∈ X such that |R(x)| = n+ 1. Towards proving that
(x, Tx) is GL-suitable, we first show that R(x) = [Tx]∼. If y ∈ R(x), then since
(X,∼, R) is a partial GL-frame, there exists y′ ∼ y such that R(y′) ( R(x).
We then also have xRy′, since xRy, and therefore y′ ∈ Tx, so y ∈ [Tx]∼.
Conversely, since R(x) is ∼-saturated and contains Tx, it also contains [Tx]∼.
Now let y ∈ Tx. We need to show that there exists S ( Tx such that (y, S) is
GL-suitable; we will show that Ty is an instance of such an S. Since y ∈ Tx,
we have R(y) ( R(x), so |R(y)| ≤ n, and by the induction hypothesis (In)
applied to y, we see that (y, Ty) is GL-suitable. We now prove that Ty ( Tx.
If z ∈ Ty, then yRz, and since y ∈ Tx we have R(y) ( R(x), so xRz. Also,
R(z) ( R(y) ( R(x), proving that z ∈ Tx. Finally, we have that y ∈ Tx but
clearly y 6∈ Ty, so Ty is strictly contained in Tx. This concludes the proof of
(In+1). We now easily deduce that p is surjective: for any x ∈ X, we have
p((x, Tx)) = x, and (x, Tx) is GL-suitable by I|R(x)|. 2

The following is now an easy but important consequence of the results in this
section.

Theorem 4.7 Let (A,B,2) be a partial GL-algebra. Then the homomorphism
i : (A,B,2)→ F (A,B,2) is injective.

Proof. Since p : G(X,∼, R) → (X,∼, R) is surjective by Proposition 4.6, the
result follows by Corollary 3.3. 2

In the terminology of [3], Theorem 4.7 shows that F (A,B,2) is an injective
one-step extension of (A,B,2), and (hence) that the class of partial GL-algebras
has the extension property [3, Def. 9]. A proof of a closely related fact is given
by different methods in [3, Sec. 9.2, Thm. 4]. The latter theorem, however,
shows that the dual map p is surjective without identifying exactly which points
are in the frame G(X,∼, R), but just showing that there are enough points.
As such, the arguments given in the proofs of Propositions 4.5 and 4.6 are the
main technical contributions of this paper. In the following sections, we will
apply these results to construct free algebras and graded models for GL.

5 Application: free algebras for GL

Throughout the rest of the paper, fix a finite set P = {p1, . . . , pk} of proposi-
tional variables.

Definition 5.1 Let FK(P ) denote the free modal algebra over P and let
(An+1, An,2n) be the increasing chain of sub-partial modal algebras of FK(P )
where An is the Boolean algebra of K-equivalence classes of modal formulas of
degree ≤ n, as in Example 2.3.

Let (B1, B0,20)
i0
↪→ (B2, B1,21)

i1
↪→ · · · be a countable chain of embeddings

of partial modal algebras with in(Bn+1) ⊆ Bn+1. For any v : P → B0, there
exists, for each n ≥ 0, a natural interpretation function vn from An to Bn,
defined as follows:

• v0 is the unique Boolean algebra homomorphism extending v;



228 Free Algebras for Gödel-Löb Provability Logic

• vn+1 is the unique Boolean algebra homomorphism such that, for all φ of
modal degree ≤ n, vn+1(2φ) = 2nvn(φ) and vn+1(φ) = in(vn(φ)).

Note that each interpretation function vn is a well-defined homomorphism of
partial modal algebras (Bn+1, Bn,2n)→ (An+1, An,2n).
We now apply the results in the previous section to give an incremental con-
struction of the free k-generated GL-algebra, for any k ≥ 0. Let B0 be the free
Boolean algebra over P . Let B1 := B0 + V (B0). Then B0 is a subalgebra of
B1, and we define 20 : B0 → B1 to be the map which sends a ∈ B0 to the
formal element 2a ∈ V (B0). We thus obtain a finite partial modal algebra
(B1, B0,20). The finite partial frame (X1,∼1, R1) that is dual to (B1, B0,20)
for the 1-generated case is depicted in the figure below. Note that, for any k,
the partial frame (X1,∼1, R1) is a partial GL-frame, simply because each of
the 2k equivalence classes contains a blind point. Therefore, (B1, B0,20) is a
partial GL-algebra by Proposition 3.9.
Now, for n ≥ 1, we inductively define (Bn+1, Bn,2n) := F (Bn, Bn−1,2n−1),
and we let in be the natural map Bn → Bn+1. Then, for each n, (Bn+1, Bn,2n)
is a partial GL-algebra, and, hence, by Theorem 4.7, each in is injective.

p ∧∇∅ ¬p ∧∇∅

p ∧∇{p} ¬p ∧∇{p}

p ∧∇{¬p} ¬p ∧∇{¬p}

p ∧∇{p,¬p} ¬p ∧∇{p,¬p}

Fig. 1. The partial frame (X1,∼1, R1) in the case P = {p}. In this diagram, the
points are labelled by the atoms of the Boolean algebra A1 that they represent. The
classes of the equivalence relation ∼1 are depicted by the two ellipses. The relation
R1 is depicted by arrows from points to classes; for instance, the arrow from the point
x := p ∧∇{p} to the class [x]∼1 indicates that xR1y for any point y in [x]∼1 .

Theorem 5.2 For each n ≥ 0, the partial GL-algebra (Bn+1, Bn,2n) is iso-
morphic to the partial modal subalgebra (A′n+1, A

′
n,2n) of the free GL-algebra

which consists of the GL-equivalence classes of modal formulas of degree ≤ n.
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Theorem 5.2 is a straightforward consequence of the results in Section 3 of [9], in
particular cf. Thm. 3.15. The isomorphism A′n → Bn is given by factoring the
natural interpretation function An → Bn (Definition 5.1) through the quotient
An � A′n of An. The reader is referred to [9, Section 2–3] for a more detailed
proof.

Corollary 5.3 The free k-generated GL-algebra is isomorphic to (Bω,2),
where Bω is the Boolean algebra colimit of the chain (in : Bn ↪→ Bn+1)n≥0

of embeddings of Boolean algebras, and 2 is the unique operation Bω → Bω
such that, for all n ≥ 0, 2 ◦ jn = jn+1 ◦ 2n (here, jn : Bn ↪→ Bω denotes the
colimit embedding).

6 Application: Graded models for GL

In this section, we give a semantic interpretation of the above results on finitely
generated free GL-algebras.
We first translate the algebraic definition of the interpretation functions (Defi-
nition 5.1) into a dual definition of a notion of graded model and a satisfaction
relation for it.

Definition 6.1 A graded frame X is a chain {(Xn,∼n, Rn)}n≥1 of partial
frames such that Xn+1/∼n+1

∼= Xn for all n ≥ 1. A graded model is a pair
(X, f) where X is a graded model and f : X1 → P(P ) is a function such that,
for each p ∈ P , f−1(p) is ∼1-saturated.
We inductively define, for any formula φ of modal degree ≤ n, and any x ∈ Xn,
the relation “X,x |= φ” as follows:

• For the case n = 1: let x ∈ X1.
· For φ = pi, we define X,x |= pi if, and only if, pi ∈ f(x), and we extend

this definition to all 2-free formulas in the usual way;
· For φ = 2ψ, where ψ is 2-free, we define X,x |= 2φ if, and only if, for all
y ∈ X1 such that xR1y, we have X, y |= φ.

• For the induction step, assume that the relation “X,x |= φ” has been defined
for all formulas φ of modal degree ≤ n and all x ∈ Xn. Let x ∈ Xn+1.
· For φ of modal degree ≤ n, we define X,x |= φ if, and only if, X, [x]∼n+1

|=
φ;
· For φ of modal degree ≤ n, we define X,x |= 2φ if, and only if, for all
y ∈ Xn+1 such that xRn+1y, we have X, [y]∼n+1

|= φ;
· Now, for an arbitrary φ of modal degree ≤ n+ 1, we write φ as a Boolean

combination of formulas φ1 . . . , φr, and 2φr+1, . . . ,2φr+s, where each φi
is of modal degree ≤ n. We now define X,x |= φ in the usual way.

Proposition 6.2 Let (X, f) be a graded model. For n ≥ 1, let (An, An−1,2n)
be the partial modal algebra dual to the partial frame (Xn,∼n, Rn). For any φ
of modal degree ≤ n and x ∈ Xn, we have

x ∈ vn(φ) ⇐⇒ X,x |= φ.
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Proof. Clear from the definitions of the functions vn, the satisfaction relation,
and the dual partial modal algebra of a partial frame. 2

Definition 6.3 Fix P = {p1, . . . , pk}. Let X0 := P(P ), X1 := X0 × P(X0).
For n ≥ 1, (Xn+1,∼n+1, Rn+1) := G(Xn,∼n, Rn), where G is defined as in
Definition 4.4. Let (X, f) be the graded model given by these partial frames
and the valuation f : X1 → P(P ) given by projection onto the first coordinate.
We call (X, f) the canonical graded GL-model (on k generators).
For each n ≥ 0, we now associate to each x ∈ Xn a formula φ(x) of degree ≤ n.
For x ∈ X0, let

φ(x) :=
∧
pi∈x

pi ∧
∧
pi 6∈x

¬pi.

For n ≥ 0, assume that the formulas φ(x) have been defined for all x ∈ Xn,
and let y ∈ Xn+1. Since y ∈ Xn × P(Xn), we may write y = (x, T ), and we
define

φ(y) := φ(x) ∧∇{φ(t) | t ∈ T}.
The following corollary is a consequence of combining Proposition 4.5, Theo-
rem 5.2 and Proposition 6.2.

Corollary 6.4 Any modal formula ψ of degree ≤ n is GL-equivalent to the
finite (possibly empty) disjunction of the set

Nψ := {φ(x) | x ∈ Xn such that X,x |= ψ}.

7 Conclusion

In this paper we applied the general theory of incremental constructions of free
modal algebras using partial modal algebras ([12], [9], [5]) to the particular
case of GL. We obtained a bottom-up construction of the free GL-algebra and
normal forms for GL. Normal forms play a role in the proofs of interpolation
and definability theorems for GL, cf. e.g. [13] and [18]. It is now perhaps
also a natural and feasible question whether constructions like the one given
in this paper could be applied to provability and interpretability logics [20]
other than GL. We leave it as an open question for further research whether
the results in this paper could yield new insights about such proofs. We have
also not been able to discuss more proof-theoretical aspects of the incremental
approach; more about this can be found [4] of Bezhanishvili and Ghilardi.
The reader will have noted that the normal forms that we defined for GL in
Definition 6.3 are of a slightly different form than Fine’s normal forms as in
(1) above. In particular, while Fine’s normal forms are the conjunction of a ∇-
formula with a modal formula of degree 0, here we only obtain a conjunction
of a ∇-formula with a modal formula of lesser degree. We expect that an
equivalence with Fine-type normal forms for GL can be obtained by either a
syntactic or semantic argument, but we leave the precise formulation of such a
result to further research.
A phenomenon that seems to emerge from the approach taken in this paper is
that either a two-sorted or a bi-modal variant of a logic can be better behaved
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and easier to study than the one-sorted or uni-modal logic that one intended to
study in the first place. We regard it as an important question to obtain a more
structural understanding from this phenomenon, as it could also be interesting
in the study of other modal logics than GL.
On a related topic, it remains rather mysterious why, of the possible quasi-
equational flattenings of the Gödel-Löb axiom, one flattening (namely (3)) is
“better” than another, namely

if b ≤ 2a then 2(b→ a) ≤ 2a, (5)

which does not admit a construction as the one in this paper, cf. [4, Sec. 9.2,
Ex. 3]. In order to understand this phenomenon, it would probably help to take
the idea seriously that multi-sortedness/polymodality plays an important role
here. To make the question a bit more concrete: is there is an apparent struc-
tural, maybe Sahlqvist-like, explanation for the fact that the quasi-equation
(3) is better behaved than the quasi-equation (5)?
The results in this paper are close in spirit to [14], where a construction of a
“canonical exact model” for GL is given, in an analogous way to the universal
model for intuitionistic propositional logic. However, note that the approach
used in this paper uses a different “slicing into finite parts” than the approach
of exact/universal models. Whereas the latter organizes normal/canonical for-
mulas according to the height of the corresponding point in the canonical frame,
our method organizes formulas according to their modal degree. It is another
interesting direction for further research to investigate how these two different
methods are precisely related, both in the context of GL and in the context of
intuitionistic propositional logic. We refer to [11, Section 8] for a more detailed
study of the relationship between the universal model and the approximating
chain in the context of intuitionistic propositional logic.
Moss [17] gives a one-sorted account of canonical formulas and compares his
approach to filtrations and Fine’s original approach. It would be equally inter-
esting to compare the recent results of the “incremental construction” kind to
the more common modal logic method of filtrations.
The nabla connective, ∇, is important in coalgebraic modal logic [16] and we
think it is an important question how the methods discussed in this paper, or
more generally in the algebraic theory of normal forms, relate to coalgebraic
modal logic. As a first step in this direction, a coalgebraic account of Ghilardi’s
method for the incremental construction of free algebras, but only in the case of
equations of rank exactly 1, was given in [6]. It would be an interesting research
project to give a similar coalgebraic account of the incremental construction
of free algebras for varieties axiomatized by quasi-equations of rank at most
1. A first pointer in this direction may be [9, Section 2], where one can find a
category-theoretic formulation of the results about incremental constructions
that were used in this paper.
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Appendix

A Proofs of basic facts in Section 2

Theorem A.1 (Duality for finite partial modal algebras) The category
of finite partial frames is dually equivalent to the category of finite partial modal
algebras.

Proof. We have already defined a contravariant functor from partial frames
to partial algebras, and this functor clearly sends finite partial frames to fi-
nite partial modal algebras. Conversely, given a finite partial modal algebra
(A,B,2), its dual finite partial frame (X,∼, R) is defined by:

X := At(A) = {x ∈ A | x is an atom of A},

for x, x′ ∈ X, x ∼ x′ def⇐⇒ for all b ∈ B, x ≤ b if and only if x′ ≤ b,

xRx′
def⇐⇒ for all b ∈ B, x ≤ 2b implies x′ ≤ b.

Given a homomorphism of partial modal algebras h : (A,B,2)→ (A′, B′,2′),
its dual bounded morphism f : (Y,∼Y , S)→ (X,∼X , R) is defined by f(y) :=∧
{a ∈ A | y ≤ h(a)}. It is standard to show that these assignments define a

functor from finite partial modal algebras to finite partial frames which is an
inverse, up to natural isomorphisms, of the functor from finite partial frames
to finite partial modal algebras. (Cf., e.g., [9, Thm. 4.3].) 2

Fact A.2 The dual of A+B is the Cartesian product At(A)×At(B) and the
Boolean algebra A+B is isomorphic to P(At(A)×At(B)).

Proof. Immediate from finite duality. The isomorphism in the second part of
the statement sends u ∈ P(At(A) × At(B)) to the element

∨
(x,y)∈u(x ∧ y) in

A+B. 2

Fact A.3 The dual of V (A) is P(At(A)) and the Boolean algebra V (A) is
isomorphic to P(P(At(A))).

Proof. Note that atoms of V (A) correspond to homomorphisms V (A) → 2,
which correspond to meet-preserving functions A → 2, which correspond to
subsets of At(A) by finite duality. The isomorphism in the second part of
the statement sends an element u ∈ P(P(At(A))) to the element

∨
T∈u∇T of

V (A), where we use the ‘nabla’-notation ∇T := 2
(∨

t∈T t
)
∧
(∧

t∈T 3t
)
. 2

Fact A.4 The dual of A+V (A) is X×P(X), where X := At(A) and A+V (A)
is isomorphic to P(X × P(X)). The subalgebra A of A + V (A) is dual to the
equivalence relation ≈ on X × P(X) defined by (x, T ) ≈ (y, S) if, and only if,
x = y. The dual of the operation 2 : A → A + V (A) is the relation Q on
X × P(X) defined by (x, T )Q(y, S) if, and only if, y ∈ T .

Proof. Combining the previous two facts, the isomorphism between A+V (A)
and P(X × P(X)) is given by sending u ∈ P(X × P(X)) to the element∨

(x,T )∈u(x ∧∇T ). For the other statements, cf., e.g., [9, Lemma 5.10]). 2
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