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Abstract
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is exponentially more succinct than ML by showing that this is already true for
signatures that contain only one diamond and one propositional symbol. As a corollary
of these results, we obtain an alternative proof of the fact that modal circuits are
exponentially more succinct than ML-formulae.
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1 Introduction

Unlike computational complexity theory where the question of proving lower
bounds on the size of Boolean formulae and Boolean circuits computing a given
Boolean function is a central challenge of the whole field, it seems that the
general problem of proving lower bounds on formula and circuit-size in modal
logic (ML) has not attracted much attention outside the field of temporal logics.

As far as we know, the first lower bound on the size of ML-formulae comes
from [17] where it is shown that any ML-formula locally corresponding to the
first-order condition ∀y∀z((xRy∧xRz)→ (yRz∨zRy∨y = z)) contains at least
two different propositional variables. After that, the interest in proving such
bounds was focussed mainly on temporal logics with one of the first results,
derivable from [15], being that there is a sequence of first-order formulae with
three variables ϕ1, ϕ2, . . . for which there is a polynomial p with the property
that, for n ≥ 1, the length of ϕn is less or equal to p(n), but there is no
sequence of temporal formulae ψ1, ψ2, . . . such that ϕi is equivalent on ω-words
to ψi and the lengths of the formulae ψ1, ψ2, . . . can be bounded from above by
an elementary function of their indices, i.e., first-order logic is non-elementarily
more succinct than temporal logic on ω-words. Two lower bounds on the size
of temporal formulae deserve special mention. The first one [18] is that every
computation tree logic (or µ-calculus) formula expressing the property there is
a path along which there are n positions v1, v2, . . ., vn (not necessary in this
order) satisfying the propositions p1, p2, . . ., pn respectively must have size at
least 2n√

n
. This estimate was improved in [1] to n!. The second is from [4], in

which it is shown that every formula of the linear-time temporal logic (LTL)
expressing the property for any two positions v and w on a path π, if π, v |= pi
iff π,w |= pi for any 1 ≤ i ≤ n, then π, v |= pn+1 if and only if π,w |= pn+1,
i.e., if v and w agree on the first n propositions, then they agree on pn+1 too
has size at least 2n. Using the property any position v on a path π that agrees
with the initial position v0 on p1, p2, . . ., pn must also agree on pn+1 it was
proven in [9] that any LTL formula that expresses this property, contains only
future temporal operators, and is evaluated at the initial position of the path
has size at least 2n.

In contrast to temporal logic, results on lower bounds on formula size in the
general setting of modal logic seem to be scarce. Besides [17], we would like to
mention the following articles. In [11], a modal language with 5 boxes: [R], [id],
[¬S], [S1 ∩ S2], and [S−] is studied. As usual, R is an atomic binary relation
on the underlying Kripke structure. The more complex modalities are obtained
from the identity relation id, the complement ¬S of S, the intersection S1 ∩S2

of S1 and S2, and the converse S− of the relation S. The authors proved that,
for any n, any formula in this language that defines the property the carrier
set of the Kripke model has cardinality at least 2n has size at least 2n−1.

Ehrenfeucht-Fräıssé games were used in [13] to show that every ML-formula
that “says” there is a point that satisfies the proposition p reachable from the
current point in at most 2n steps must have modal depth of at least 2n.
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In [16], it is shown, among other things, that, for any n ≥ 1 and any k
such that 2n < k ≤ 2n+1, any ML-formula that modally defines the property
the current point has less than k successors contains at least n + 1 different
propositional symbols.

Two other papers that establish lower bounds on the size of ML-formulae
are [5] and [10]. In the former, using a technique developed in [1], the authors
proved an exponential lower bound on the size of certain ML-formulae. In the
latter, it is established that, on the class of all Kripke models (K), there is
no equivalence-preserving translation from public announcement logic (a con-
servative extension of ML that has a popular epistemic interpretation and is
usually denoted by PAL) to ML that produces an equivalent ML-formula of
sub-exponential length for every PAL-formula, i.e., PAL is exponentially more
succinct than ML on K provided that there are at least two different boxes [a],
[b] and one propositional symbol in both logics. If there are at least four boxes
and four propositional symbols in both logics, it was shown in [6] that PAL is
exponentially more succinct than ML on S5-models, too.

In the present paper,

• we strengthen the result from [10] in yet another way by proving that the
presence of two different boxes is not necessary to show that PAL is expo-
nentially more succinct than ML on K (one box is enough);

• we prove that the logic of contingency [12] which is strictly less expressive
on K than ML is nevertheless exponentially more succinct than ML on K;

• we use the above results to give an alternative proof of the fact that modal
circuits are exponentially more succinct than modal formulae [8].

2 Technical Preliminaries

Let P be a countable set of propositional symbols. We fix a modal signature
S = {P,¬,∧,∨,2,3}. The definition of modal formulae over S, Kripke models
and the truth of a formula ϕ in a point m of a Kripke model M, written
(M,m) |= ϕ is standard [2]. Boolean formulae are modal formulae that do
not contain the 2 and 3 operators. We call the pair (M,m) a pointed model.
Sets of pointed models are denoted A,B . . .. We write M |= ϕ to mean that
(M, w) |= ϕ for all (M, w) ∈M. We would like to stress that M may be empty.
In this case, it is trivially true that, for all (M, w) ∈ ∅, we have (M, w) |= ϕ
and therefore, ∅ |= ϕ. Abusing notation, we write m ∈M to mean that m is a
node or a point of the carrier set ofM. The binary relation in the Kripke model
M that is used to interpret the operators 2 and 3 is denoted RM or simply
R when no confusion arises. We assume that the reader is familiar with the
notion of bisimulation between pointed models and that two bisimilar pointed
models satisfy the same formulae over S [2]. We proceed now to the definition
of our main technical tool that is motivated as follows.

Our goal is to prove exponential lower bounds on the size of formulae ϕ that
express a certain property P of pointed models. By “size”, we mean the length
of ϕ as a string over the alphabet S. Intuitively, it will be helpful if we have a
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tool that is tailored simultaneously to some useful approximation of our notion
of size of the formulae ϕ and to the fact that they can differentiate between
models that have the property P and those that do not. One such tool can be
found by defining the length of any ϕ to be the number of nodes of its syntax
tree Tϕ. In addition, we must add some new features to syntax trees in order
to be able to reason about formulae that differentiate between Kripke models
that have a given property from the ones that do not. Extended syntax trees
were introduced in [7] in the setting of first order logic and can be used as a
formalisation of the above intuition 5 .

As its name suggests, an extended syntax tree of a modal formula ϕ is just
the usual syntax tree of ϕ where, apart from a syntax label that is a symbol
from S, each node has a semantic label that is a pair of sets of pointed models
〈M,N〉. A node η with a semantic label 〈M,N〉 will be denoted M ◦N when no
confusion arises. The pointed models in M are called the models on the left of
η. Similarly, the pointed models in N are called the models on the right of η.
To simplify our exposition, we write lft(η) to mean the set of models on the
left of η (in this case, lft(η) = M) and, similarly, rght(η) to mean the set of
models on the right of η (in the present case, rght(η) = N).

We begin by defining a number of useful operations on pointed models.

Definition 2.1 Let (M, w) be a pointed model and M be a (not necessarily
non-empty) set of pointed models. Then

•
2(M, w) = {(M, v) | v ∈M and wRMv}.

Intuitively, 2(M, w) is the set of all pointed models that can be reached
from w by making one RM-step. Note that if there is no point v ∈ M such
that wRMv, then 2(M, w) = ∅.

• If (M, w) |= 3ψ, then there is at least one v ∈ M such that wRMv and
(M, v) |= ψ. We construct the non-empty set of all such pointed models

3ψ(M, w) = {(M, v) | v ∈M such that wRMv and (M, v) |= ψ}.

• 2(M) is defined as

2(M) =
⋃

(M,w)∈M
2(M, w).

It is obvious that 2(M) is empty when 2(M, w) = ∅ for each (M, w) ∈ M
or when M = ∅.

• If M |= 3ψ, then, we form the set of pointed models

3ψ(M) =
⋃

(M,w)∈M
3ψ(M, w).

5 Readers familiar with [1] can easily see that these trees can be thought of as closed game
trees for suitably defined versions of the Adler-Immerman games introduced in [1]. Essentially
the same tool was used in [5] under the name uniform strategy trees.
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It is easy to see that 3ψ(M) = ∅ iff M = ∅.
We are ready to define extended syntax trees of ML-formulae. For conve-

nience, we are working with formulae in negation normal form, i.e., formulae in
which ¬ can appear only in front of propositional symbols. From now on, and
unless otherwise stated, a formula means an ML-formula in negation normal
form. As usual, a literal l is a propositional symbol p or its negation ¬p. We
denote the set of all literals by LIT . For a symbol s ∈ LIT ∪ {∧,∨,2,3}, we
write synl(η) = s to mean that the node η has the syntax label s.

Definition 2.2 [Extended Syntax Trees] For any formula ϕ and any sets of
pointed models M and N such that M |= ϕ and N |= ¬ϕ, the extended syntax
tree TM◦N

ϕ is defined recursively on the structure of ϕ as follows:

(ϕ is a literal l): TM◦N
l has a single node r = M ◦ N such that synl(r) = l.

(ϕ is ψ1 ∧ ψ2): T
M◦N
ψ1∧ψ2

has a root r = M◦N and synl(r) = ∧. The left successor

of r is the root M ◦N1 of TM◦N1

ψ1
. The right successor of r is the root M ◦N2

of TM◦N2

ψ2
where the sets N1 and N2 are defined as follows. N1 = {(N , v) ∈

N | (N , v) |= ¬ψ1} and N2 = {(N , v) ∈ N | (N , v) |= ¬ψ2}. Hence, while
M |= (ψ1 ∧ψ2), we have N1 |= ¬ψ1 and N2 |= ¬ψ2 and thus N |= ¬(ψ1 ∧ψ2).
We would like to stress that N = N1 ∪ N2 does not imply N1 ∩ N2 = ∅.

(ϕ is ψ1 ∨ ψ2): T
M◦N
ψ1∨ψ2

has a root r = M◦N and synl(r) = ∨. The left successor

of r is the root M1 ◦N of TM1◦N
ψ1

. The right successor of r is the root M2 ◦N
of TM2◦N

ψ2
where M1 = {(M, v) ∈ M | (M, v) |= ψ1} and M2 = {(M, v) ∈

M | (M, v) |= ψ2}.
Therefore, M1 |= ψ1 and M2 |= ψ2 while N |= ¬(ψ1 ∨ ψ2). Again, M1 and

M2 may have a non-empty intersection.

(ϕ is 2ψ): TM◦N
2ψ has a root r = M◦N and synl(r) = 2. The unique successor

of r is the root 2(M)◦3¬ψ(N) of T
2(M)◦3¬ψ(N)
ψ . It is obvious that 2(M) |= ψ

and 3¬ψ(N) |= ¬ψ.

(ϕ is 3ψ): TM◦N
3ψ has a root r = M◦N and synl(r) = 3. The unique successor

of r is the root 3ψ(M)◦2(N) of T
3ψ(M)◦2(N)
ψ . It is obvious that 3ψ(M) |= ψ

and 2(N) |= ¬ψ.

As we said above, the size of a formula ϕ is its length as a word over S or,
equivalently, the number of nodes in it syntax tree. However, for our purposes,
defining the size of ϕ as the number of leaves of its syntax tree will suffice.

Definition 2.3 The size of a formula ϕ, denoted |ϕ|, is the number of leaves
of an extended syntax tree TM◦N

ϕ for some (any) sets of pointed models M and
N such that M |= ϕ and N |= ¬ϕ.

It is obvious that |ϕ| is the number of not necessarily different literals oc-
curring in ϕ. Note that, for every ϕ (even for contradictions like p∧¬p), we can
find a pair 〈M,N〉 such that M |= ϕ and N |= ¬ϕ. This, of course, is done by
taking M = N = ∅. In fact, we can identify the usual syntax tree Tϕ of ϕ with
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the extended syntax tree T ∅◦∅ϕ . It is clear that extended syntax trees contain
finitely many nodes; in particular, they do not have infinitely long branches.

Example 2.4 The extended syntax tree T
〈A◦D〉
3b∧3¬b is shown in Figure 1. Pointed

models occurring in the semantic labels of the tree-nodes are the pairs consisting
of the relevant Kripke modelA, B or C and the nodes marked by . and /. Hence,
A consists of the pointed model on the left of the root of the tree which has
syntax label ∧ while D is on the right and contains the pointed models based
on the Kripke models B and C. Black circles denote the points where the atom
b is true; white circles denote points that do not satisfy any proposition.

∧
A

.
B
/

C
/

♦

A
.

B
/

♦

C
/

A
.

b

B

/

A

. ¬b

C

/

A

.

Fig. 1. An extended syntax tree of 3b ∧3¬b.

The meaning of the next obvious proposition is that even if the formula ¬ϕ
is not in negation normal form, we can always find an equivalent to it formula
in negation normal form that has the same number of literals.

Proposition 2.5 For any ML-formula in negation normal form ϕ, there is a
formula in negation normal form ϕ such that ϕ is equivalent to ¬ϕ on K and
|ϕ| = |ϕ|.
Proof. The desired formula ϕ is obtained from ¬ϕ by pushing ¬ inside ϕ using
DeMorgan’s laws and the equivalences ¬3ψ ≡ 2¬ψ and ¬2ψ ≡ 3¬ψ. 2

Proposition 2.6 For any pair of sets of pointed models 〈M,N〉, any formula
ϕ such that M |= ϕ and N |= ¬ϕ has size at least n iff any formula ψ such that
N |= ψ and M |= ¬ψ has size at least n.

Proof. Let us assume that |ϕ| ≥ n for any formula ϕ for which M |= ϕ and
N |= ¬ϕ but that there is a ψ such that N |= ψ and M |= ¬ψ and |ψ| < n.
Then M |= ψ and N |= ¬ψ. Using Proposition 2.5, we see that |ψ| = |ψ| < n
and, thus, arrive at a contradiction. The other direction is similar. 2
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Proposition 2.7 Let 〈M,N〉 and 〈M1,N1〉 be two pairs of sets of pointed mod-
els such that, for every (M,m) ∈M, there is a bisimilar model (M1,m1) ∈M1

and, for every (N , n) ∈ N, there is a bisimilar model (N1, n1) ∈ N1. If every
formula ϕ such that M |= ϕ and N |= ¬ϕ has size at least n, then every formula
ψ for which M1 |= ψ and N1 |= ¬ψ has size at least n.

Proof. The proof follows immediately from the fact that for every formula ψ
for which M1 |= ψ and N1 |= ¬ψ, we have that M |= ψ and N |= ¬ψ. 2

Proposition 2.8 If the pointed models (A, a) and (B, b) are bisimilar, then
there is no formula ϕ such that its extended syntax tree T contains a node η
for which (A, a) ∈ lft(η) and (B, b) ∈ rght(η).

Proof. According to Definition 2.2, every node η of T is a root of a sub-tree T1
that is an extended syntax tree of a sub-formula ψ of ϕ such that lft(η) |= ψ
and rght(η) |= ¬ψ. Thus, assuming that there are two bisimilar pointed models
(A, a) ∈ lft(η) and (B, b) ∈ rght(η) leads to a contradiction because bisimilar
pointed models satisfy the same formulae. 2

Proposition 2.9 If every formula ϕ such that M |= ϕ and N1∪ . . .∪Nk |= ¬ϕ
has size at least n, then (|ϕ1| + |ϕ2| + . . . + |ϕk|) ≥ n for any k formulae
ϕ1, . . . , ϕk such that M |= ϕ1 ∧ . . . ∧ ϕk and Ni |= ¬ϕi.
Proof. Let ϕ1, . . . ϕk be such that M |= ϕ1∧ . . .∧ϕk and Ni |= ¬ϕi. Therefore,
M |= ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk and N1 ∪ . . . ∪Nk |= ¬(ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk). The result
follows immediately from our assumption. 2

3 Main Results

In this section, we are going to prove some lower bounds on the size of formulae
which we will later use to show that public announcement logic (PAL) and
contingency logic (ConML) are exponentially more succinct than ML. To this
end, we begin with a very brief introduction to these two logics.

PAL [14] is a conservative extension of ML in which formulae of the form
[ϕ]ψ are allowed. In a natural way, we can introduce a dual 〈ϕ〉 of the operator
[ϕ] by stipulating that 〈ϕ〉 is an abbreviation of ¬[ϕ]¬. Intuitively, a formula
[ϕ]ψ is true in a pointed model (M,m) if after removing all points that do not
satisfy the formula ϕ, the formula ψ is true at the point m in the resulting new
model. For every PAL-formula, there is an equivalent ML-formula that can
be obtained by following the rewriting rules below [14]. For any pointed model
(M,m),

(M,m) |= 〈ϕ〉p iff (M,m) |= ϕ ∧ p;
(M,m) |= 〈ϕ〉(ψ1 ∧ ψ2) iff (M,m) |= 〈ϕ〉ψ1 ∧ 〈ϕ〉ψ2;
(M,m) |= 〈ϕ〉¬ψ iff (M,m) |= ϕ ∧ ¬〈ϕ〉ψ;
(M,m) |= 〈ϕ〉3ψ iff (M,m) |= ϕ ∧3〈ϕ〉ψ;
(M,m) |= 〈ϕ1〉〈ϕ2〉ψ iff (M,m) |= 〈〈ϕ1〉ϕ2〉ψ.

ConML was introduced in [12]. It extends Boolean logic with formulae4ϕ.
For our purposes, it is enough to say that for every pointed model (M,m), we
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have (M,m) |= 4ϕ iff (M,m) |= 2ϕ ∨ 2¬ϕ. It is known [3] that ConML is
strictly less expressive on K than ML.

Here, we are going to show that on K, there is no equivalence-preserving
translation from either PAL or ConML to ML that produces an equivalent
ML-formula of sub-exponential length. To this end, we are going to exhibit
two infinite sequences δ1, δ2, . . . and θ1, θ2, . . . of PAL and ConML-formulae
respectively and show that every ML-formula ψn that is equivalent to δn or θn
on K has size at least 2n whereas the lengths of δn and θn are linear in n.

Definition 3.1 Let the sequences δ1, δ2, . . . and θ1, θ2, . . . be defined as follows.

δ1
def
= 3b ∧3¬b θ1

def
= 4b

...
...

δn+1
def
= 〈δn〉δ1 θn

def
= 4 . . .4︸ ︷︷ ︸

n times

b

...
...

In order to apply extended syntax trees to show that every ML-formula ψ
that is equivalent to δn or θn on K has size at least 2n, we must exhibit two
sets of pointed models M and N such that M |= ψ whereas N |= ¬ψ and show
that the extended syntax tree of ψ with root M ◦N has at least 2n leaves. We
begin by defining the required sets of pointed models for the formulae δn.

Definition 3.2 The set A1 consists of the pointed model (A1, a1) shown on
the left of the leftmost dotted line in Figure 2. The set B1 contains the two
pointed models (B11, b11) and (B12, b12) between the leftmost dotted line and the
thick vertical line. Black nodes satisfy the proposition b whereas white nodes

B1 b11 b12B2a1A1 A1 a1 b11B1
1 b12B1

2

Fig. 2. The sets of models A1, B1, A1, and B1.

do not satisfy any proposition. An arrow in a model M coming from a point
m1 and pointing to a point m2 means that m1R

Mm2. The sets A1, and B1 are
shown on the right of the thick vertical line. The only difference between the
pointed model (A1, a1) and (A1, a1) is that in the latter the point a1 satisfies
b; similarly for the pointed models (B1i , b1i ) and (B1i , b1i ) where 1 ≤ i ≤ 2.

Let us suppose that the sets An, Bn, An, and Bn have been constructed. For
any pointed model (An, an), (Bnk , bnk ), (An, an), and (Bnk , bnk ), we call the points
an, bnk , an, and bnk the root of the respective model. The set An+1 consists of
the pointed model (An+1, an+1) (shown in the Figure 3 on the left of the dotted
vertical line) and built from the models in An ∪ Bn ∪ An ∪ Bn as follows. We
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take the pointed models (An, an), (An, an), (Bni , bni ), (Bni , bni ), where 1 ≤ i ≤ 2,
and connect each of the roots of these models to the point an+1 as shown.

An+1 an+1

an

An

an

An

bn1

Bn1
bn2

Bn2

bn1

Bn1

bn2

Bn2

Bn+1
1 bn+1

1

an

An

bn1

Bn1
bn2

Bn2

bn1

Bn1

bn2

Bn2

Bn+1
2 bn+1

2

an

An

bn1

Bn1
bn2

Bn2

bn1

Bn1

bn2

Bn2

Fig. 3. The sets of models An+1 and Bn+1.

The set Bn+1 contains the pointed models (Bn+1
1 , bn+1

1 ) and (Bn+1
2 , bn+1

2 )
shown on the right of the dotted line.

The sets of pointed models An+1 = {(An+1, an+1)} and Bn+1 =
{(Bn+1

1 , bn+1
1 ), (Bn+1

2 , bn+1
2 )} are obtained from the models in the sets An+1

and Bn+1 by making the roots of the relevant models satisfy the proposition b.

Example 3.3 The sets A2, B2 (on the left of the thick vertical line) and A2,
B2 (on the right) are given below.

A2

a2 B2
1 b21 B2

2 b22

A2

a2 B2
1 b21 B2

2 b22

Note how the models from A1, B1 and A1, B1 shown in Figure 2 were used
in the construction of the models (A2, a2), (B21, b21) and (B22, b22). Intuitively,
A2 consists of the pointed model obtained from (A2, a2) by making its root
a2 black. Similarly, B2 consists of the models obtained from (B21, bn+1

1 ) and
(B22, b22) by making b21 and b22 black.

Proposition 3.4 Consider the formulae δ1, δ2, . . . from Definition 3.1. Then
An |= δn and Bn |= ¬δn.

Proof. Given the geometric shape of the models, it is easy to establish by
induction the following facts.

(i) For every δn, there is an equivalent ML-formula δ′n that can be obtained
from δn by applying the rewriting rules for PAL-formulae. Namely, we
have the recursively defined sequence of formulae

δ′1 = δ1 and δ′n+1 = δ′n ∧3(b ∧ δ′n) ∧3(¬b ∧ δ′n).
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(ii) A1 |= δ′1 and A1 |= δ′1 whereas B1 |= ¬δ′1 and B1 |= ¬δ′1.

(iii) If n > 1, then
• An |= δ′j and An |= δ′j for every j such that 1 ≤ j ≤ n;
• (Bn1 , bn1 ) |= ¬3(¬b ∧ δ′n) and (Bn1 , bn1 ) |= ¬3(¬b ∧ δ′n);
• (Bn2 , bn2 ) |= ¬3(b ∧ δ′n) and (Bn2 , bn2 ) |= ¬3(b ∧ δ′n).

The result follows immediately from the items above.
2

Next, we define suitable sets of pointed models for the formulae θ1, θ2, . . .
from Definition 3.1.

Definition 3.5 Using the conventions established in Definition 3.2, namely,
that black nodes satisfy the proposition b, white nodes do not satisfy any propo-
sition, and arrows represent relations, the sets of pointed models Cn and Dn are
defined recursively as shown in Figures 4, 5, and 6 where (Dn1 , dn1 ), . . . , (Dnk , dnk )
are all the pointed models in Dn.

C1
1 c11 C1

2 c12 D1
1 d11

Fig. 4. The sets of models C1 (on the left of the dotted line) and D1 (on the right).

Cn+1
1 cn+1

1

cn2

Cn2
cn1

Cn1

Cn+1
2 cn+1

2

dn1

Dn
1

dn2

Dn
2

. . . dnk

Dn
k

Fig. 5. The set of models Cn+1.

dn+1
1

Dn+1
1

cn1

Cn1
cn2

Cn2
dn1

Dn
1

. . . . .

dn+1
k

Dn+1
k

cn1

Cn1
cn2

Cn2
dnk

Dn
k

dn+1
k+1

Dn+1
k+1

dn1

Dn
1

dn2

Dn
2

. . . dnk

Dn
k

cn1

Cn1

dn+1
k+2

Dn+1
k+2

dn1

Dn
1

dn2

Dn
2

. . . dnk

Dn
k

cn2

Cn2

Fig. 6. The set of models Dn+1.
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Example 3.6 Figure 7 shows the sets C2, consisting of the pointed models
(C21 , c21) and (C22 , c22) and D2, consisting of (D2

1, d
2
1), (D2

2, d
2
2), and (D2

3, d
2
3). Note

how the models in C1 and D1 from Figure 4 are used in the construction of the
sets C2 and D2.

(C2
1 , c

2
1) (C2

2 , c
2
2) (D2

1, d
2
1) (D2

2, d
2
2) (D2

3, d
2
3)

Fig. 7. The set of models C2 and D2.

Proposition 3.7 For any formula θn as defined in Definition 3.1, we have
Cn |= θn and Dn |= ¬θn.

Proof. The truth of the statement follows easily from the geometric shape of
the models in Cn and Dn and from the fact that, for every θn, there is an
equivalent ML-formula θ′n defined recursively as follows θ′1 = 2b ∨ 2¬b and
θ′n+1 = 2θ′n ∨2¬θ′n. 2

We are ready now to prove our main lower-bound results formulated in
Theorem 3.8 and Theorem 3.9 below.

Theorem 3.8 (First Lower Bound on ML-formulae) Let the sets An
and Bn be as defined in Definition 3.2. Any formula ψ such that An |= ψ
and Bn |= ¬ψ has size at least 2n.

Theorem 3.9 (Second Lower Bound on ML-formulae) Let the sets Cn
and Dn be as defined in Definition 3.5. Any formula ϕ such that Cn |= ϕ and
Dn |= ¬ϕ has size at least 2n.

The proofs of both theorems rely on a number of preliminary statements
that revolve around similar ideas in both cases. We begin by establishing a
convention that will simplify our arguments. Consider, for example, the Kripke
model Cn+1

1 from Figure 5. It is a tree with root cn+1
1 . The left successor of

cn+1
1 is the root cn1 of the model Cn1 . It is obvious that the point cn1 in Cn+1

1

and the point cn1 in Cn1 are bisimilar and satisfy the same ML-formulae. Since,
in what follows, we are mainly interested in formulae-satisfiability, to increase
readability, we are going to identify bisimilar pointed models. This allows us
to substitute, e.g., the clearer (Cn2 , cn2 ) for the hard to read (Dn+1

k+2 , c
n
2 ).

Let us first prove Theorem 3.8

Proposition 3.10 For any i ∈ {1, 2}, no extended syntax tree contains a node
η such that synl(η) ∈ LIT ∪ {2}, An ⊆ lft(η), and (Bni , bni ) ∈ rght(η). The
statement remains true if An and (Bni , bni ) are replaced with An and (Bni , bni ),
respectively.

Proof. It is obvious that (An, an) and (Bni , bni ) satisfy the same Boolean for-
mulae. Hence, there is no extended syntax tree that contains a node η such
that synl(η) ∈ LIT , An ⊆ lft(η), and (Bni , bni ) ∈ rght(η).
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Let us suppose that there is an extended syntax tree containing a node
η such that synl(η) = 2, An ⊆ lft(η), and (Bni , bni ) ∈ rght(η). We consider
only the case n > 1 (the case n = 1 is similar). Then, the set 2(An) =
{(An−1, an−1), (An−1, an−1), (Bn−11 , bn−11 ), (Bn−12 , bn−12 ), (Bn−11 , bn−11 ),
(Bn−12 , bn−12 )} ⊆ lft(η1), where η1 is the successor of η. The geometry
of (Bni , bni ) is such that at least one of the models in 2(An) must appear on the
right of η1. Thus, we arrive at a contradiction with the help of Proposition 2.8.
The proof for An and (Bni , bni ) is the same. 2

Proposition 3.11 There is no extended syntax tree that contains a node η
such that synl(η) ∈ LIT ∪ {3,2}, An ⊆ lft(η) and Bn ⊆ rght(η). The
statement remains true if An and Bn are replaced with An and Bn, respectively.

Proof. The fact that no node η for which An ⊆ lft(η) and Bn ⊆ rght(η)
(or (An ⊆ lft(η) and Bn ⊆ rght(η) ) can have a syntax label that is either a
literal or 2 follows from Proposition 3.10. If synl(η) = 3, then it is easily seen
by consulting the relevant items from Definition 2.2 that the successor node of
η would contain two bisimilar models one on the left and the other on the right
which is impossible according to Proposition 2.8. 2

Proposition 3.12 Any extended syntax tree T with root r such that An ⊆
lft(r) and Bn ⊆ rght(r) contains a node η for which synl(η) = ∧, An ⊆
lft(η) and Bn ⊆ rght(η); moreover, if η1 and η2 are the two successor of
η, then An ⊆ lft(η1), (Bn1 , bn1 ) ∈ rght(η1), (Bn2 , bn2 ) 6∈ rght(η1) while An ⊆
lft(η2), (Bn2 , bn2 ) ∈ rght(η2), and (Bn1 , bn1 ) 6∈ rght(η2). The statement remains
true if An, Bn, and (Bni , bni ) for i ∈ {1, 2} are replaced with An, Bn, and
(Bni , bni ), respectively.

Proof. Let us assume that T does not have such a node η. We will show that T
contains an infinite branch which is absurd. We saw already in Proposition 3.11
that synl(r) 6∈ LIT∪{3,2}. Therefore, synl(r) ∈ {∨,∧}. If synl(r) = ∨, then,
since An contains just one model, we see that at least one of the successors r1
and r2, say r1, of r is such that An ⊆ lft(r1) and Bn ⊆ rght(r1). If r = ∧, since
Bn contains two models, our assumption and the second item from Definition
2.2 imply that, again, at least one of the successors r1 and r2, say r1, of r
is such that An ⊆ lft(r1) and Bn ⊆ rght(r1). In either case, we can find a
successor r1 of the root r of T such that An ⊆ lft(r1) and Bn ⊆ rght(r1). It is
obvious that this reasoning can be applied to the node r1. Hence, we can find
the desired infinite branch by starting at the root and “following” the nodes
that contain the models An on the left and the models Bn on the right. 2

Lemma 3.13 For any extended syntax tree T with root r, the following hold.

(i) If An+1 ⊆ lft(r) and (Bn+1
1 , bn+1

1 ) ∈ rght(r), then T contains a
node η such that synl(η) = 3, An+1 ⊆ lft(η) and (Bn+1

1 , bn+1
1 ) ∈

rght(η); moreover, if η1 is its successor, then (An, an) ∈ lft(η1) and
{(Bn1 , bn1 ), (Bn2 , bn2 )} ⊆ rght(η1). The statement remains true if An+1 and
(Bn+1

1 , bn+1
1 ) are replaced with An+1 and (Bn+1

1 , bn+1
1 ), respectively.



van Ditmarsch, Fan, van der Hoek and Iliev 151

(ii) If An+1 ⊆ lft(r) and (Bn+1
2 , bn+1

2 ) ∈ rght(r), then T contains a
node η such that synl(η) = 3, An+1 ⊆ lft(η) and (Bn+1

2 , bn+1
2 ) ∈

rght(η); moreover, if η1 is its successor, then (An, an) ∈ lft(η1) and
{(Bn1 , bn1 ), (Bn2 , bn2 )} ⊆ rght(η1). The statement remains true if An+1 and
(Bn+1

2 , bn+1
2 ) are replaced with An+1 and (Bn+1

2 , bn+1
2 ), respectively.

Proof.

(i) Let us suppose that T does not have a node η such that synl(η) = 3,
An+1 ⊆ lft(η) and (Bn+1

1 , bn+1
1 ) ∈ rght(η). We are going to show that,

in this case, T contains an infinite branch which is absurd. Using Propo-
sition 3.10 and our assumption, we see that synl(r) 6∈ LIT ∪ {2,3}.
Thus, synl(r) ∈ {∨,∧}. Using reasoning identical to the one in the
proof of Proposition 3.12, we can find at least one successor r1 of r
such that An+1 ⊆ lft(r1) and (Bn+1

1 , bn+1
1 ) ∈ rght(r1). It is obvious

that the same considerations can be applied to r1, too. Thus the de-
sired infinite branch is constructed by starting at r and following the
nodes that contain An+1 on the left and (Bn+1

1 , bn+1
1 ) on the right.

Hence, T must contain a node η, such that synl(η) = 3, An ⊆ lft(η),
and (Bn+1

1 , bn+1
1 ) ∈ rght(η). Let η1 be its successor. According to the

fifth item from Definition 2.2, we have 2(Bn+1
1 , bn+1

1 ) ⊆ rght(η1). Since
2(Bn+1

1 , bn+1
1 ) = {(An, an), (Bn1 , bn1 ), (Bn2 , bn2 ), (Bn1 , bn1 ), (Bn2 , bn2 )}, we see

that none of these pointed models can appear on the right of η1 accord-
ing to Proposition 2.8. Given the geometry of (An+1, an+1), we see that
(An, an) ∈ lft(η1). The proof for An+1 and (Bn+1

1 , bn+1
1 ) is the same.

(ii) The proof of this item is completely analogous.
2

We are now ready to prove Theorem 3.8. We proceed by proving, with
induction on n, the stronger statement below.

Any formula ϕ such that An |= ϕ and Bn |= ¬ϕ has size at least 2n and
any formula ψ such that An |= ψ and Bn |= ¬ψ has size at least 2n.

Proof.

Base step: The fact that the extended syntax tree T of any formula ϕ such
that A1 |= ϕ and B1 |= ¬ϕ has at least two leaves follows immediately from
Proposition 3.12. The same is true about A1 and B1.

Induction step: The induction step depends on the following claim.
Claim For any i ∈ {1, 2} and any n ≥ 1, any formula ϕ such that An+1 |=
ϕ and (Bn+1

i , bn+1
i ) |= ¬ϕ has size at least 2n. The statement remains

true if An+1 and (Bn+1
i , bn+1

i ) are replaced with An+1 and (Bn+1
i , bn+1

i ),
respectively.

Proof. Let us consider the case i = 2. Let T be an extended syntax tree
with root r for which An+1 ⊆ lft(r) and (Bn+1

2 , bn+1
2 ) ∈ rght(r). Using

the second item from Lemma 3.13, we see that T contains a node η1 such
that An ⊆ lft(η1) and {(Bn1 , bn1 ), (Bn2 , bn2 )} = Bn ⊆ rght(η1). Applying
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the induction hypothesis and Proposition 2.7 to the subtree T1 of T with
root η1, we see that T1 and thus T has size at least 2n. The proof of
the case i = 1 is analogous modulo the fact that we use the first item of
Lemma 3.13. This completes the proof of the claim. 2

Let us complete now the proof of the induction step. Using Proposition 3.12,
we see that the extended syntax tree T with root r, where An+1 = lft(r)
and Bn+1 = rght(r), of any formula ϕ such that An+1 |= ϕ and Bn+1 |= ¬ϕ
contains two different sub-trees T1 and T2 with roots r1 and r2 such
that An+1 = lft(r1), {(Bn+1

1 , bn+1
1 )} = rght(r1) and An+1 = lft(r2),

{(Bn+1
2 , bn+1

2 )} = rght(r2). It follows from the above Claim that both T1
and T2 have size at least 2n. Thus, the size of T must be at least 2n+1.
Again, the proof about An+1 and Bn+1 is the same.

2

Next, we prove Theorem 3.9.
Consider the sets of pointed models from Definition 3.5.

Proposition 3.14 For any n ≥ 0,

(i) if 1 ≤ i ≤ k, then no extended syntax tree contains a node η such that
synl(η) ∈ LIT∪{3}, (Cn+1

1 , cn+1
1 ) ∈ lft(η), and (Dn+1

i , dn+1
i ) ∈ rght(η);

(ii) if k+1 ≤ i ≤ k+2, then no extended syntax tree contains a node η such that
synl(η) ∈ LIT ∪{3}, (Cn+1

2 , cn+1
2 ) ∈ lft(η) and (Dn+1

i , dn+1
i ) ∈ rght(η).

Proof. It is obvious that all the pointed models in Cn and Dn satisfy the
same Boolean formulae and, therefore, η cannot have a syntax label that is
a literal. We consider only the case synl(η) = 3 for the first item and we
assume n ≥ 1. The proofs for (C11 , c11) ∈ lft(η) and (D1

i , d
1
i ) ∈ rght(η) and

(ii) are analogous. Suppose that there is an extended syntax tree containing
such a node η. Let η1 be its successor. According to the fourth item from
Definition 2.2, we have that 2(Dn+1

i , dn+1
i ) ⊆ rght(η1). Since 1 ≤ i ≤ k,

it is obvious that 2(Dn+1
i , dn+1

i ) = {(Cn1 , cn1 ), (Cn2 , cn2 ), (Dni , dni )}. Given the
geometry of the pointed model (Cn+1

1 , cn+1
1 ), either (Cn1 , cn1 ) or (Cn2 , cn2 ) must

appear on the left of η1. Using Proposition 2.8, we arrive at a contradiction.2

Proposition 3.15 For any (Dni , dni ) ∈ Dn, there is no extended syntax tree
that contains a node η such that synl(η) ∈ LIT ∪ {3,2}, Cn ⊆ lft(η), and
(Dni , dni ) ∈ rght(η).

Proof. In the case of synl(η) = 3 or synl(η) ∈ LIT , the statement follows
from Proposition 3.14. If synl(η) = 2, then it is easily seen that its successor
η1 has two bisimilar models one on the left and the other on the right. Hence,
we arrive at a contradiction with the help of Proposition 2.8. 2

Proposition 3.16 For any (Dni , dni ) ∈ Dn, if T is an extended syntax tree with
root r for which Cn ⊆ lft(r) and (Dni , dni ) ∈ rght(r), then T has a node η
such that synl(η) = ∨, Cn ⊆ lft(η), and (Dni , dni ) ∈ rght(η); moreover, if η1
and η2 are the two successor of η, then (Cn1 , cn1 ) ∈ lft(η1), (Cn2 , cn2 ) 6∈ lft(η1),
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and (Dni , dni ) ∈ rght(η1) while (Cn2 , cn2 ) ∈ lft(η2), (Cn1 , cn1 ) 6∈ lft(η2), and
(Dni , dni ) ∈ rght(η2).

Proof. Let us assume that T does not have such a node η. We are going to
show that T contains an infinite branch which is absurd. Indeed, using Propo-
sition 3.15, we see that synl(r) 6∈ LIT ∪ {2,3}. Therefore, either synl(r) = ∧
or synl(r) = ∨. In the first case, at least one of the successors r1 and r2 of
r, say r1, will be such that Cn ⊆ lft(r1) and (Dni , dni ) ∈ rght(r1). In the
second case, since the two successors r1 and r2 of r do not have the properties
described in the statement, at least one of them, say r1, must be such that
Cn ⊆ lft(r1) and (Dni , dni ) ∈ rght(r1). In either case, we can find a successor
r1 of the root r of T such that Cn ⊆ lft(r1) and (Dni , dni ) ∈ rght(r1). It is
obvious that this reasoning can be applied to the node r1. Hence, we can find
the desired infinite branch by starting at the root and “following” the nodes
that contain the models Cn on the left and the model (Dni , dni ) on the right.2

To simplify the exposition of the proofs below, we write 2(η) to mean the
successor of a node η in an extended syntax tree such that synl(η) = 2.

Lemma 3.17 For any extended syntax tree T with root r,

(i) if (Cn+1
1 , cn+1

1 ) ∈ lft(r) and (Dn+1
i , dn+1

i ) ∈ rght(r), where 1 ≤ i ≤ k,
then T contains a node η such that synl(η) = 2, (Cn+1

1 , cn+1
1 ) ∈ lft(η),

and (Dn+1
i , dn+1

i ) ∈ rght(η);

(ii) if k + 1 ≤ i ≤ k + 2, (Cn+1
2 , cn+1

2 ) ∈ lft(r) and (Dn+1
i , dn+1

i ) ∈ rght(r),
then T contains a node η such that synl(η) = 2, (Cn+1

2 , cn+1
2 ) ∈ lft(η),

and (Dn+1
i , dn+1

i ) ∈ rght(η);

(iii) if T contains a node η such that synl(η) = 2, (Cn+1
1 , cn+1

1 ) ∈ lft(η),
and {(Dn+1

i , dn+1
i ), . . . , (Dn+1

j , dn+1
j )} ⊆ rght(η), where 1 ≤ i ≤ j ≤

k, then {(Cn1 , cn1 ), (Cn2 , c
n
2 )} ⊆ lft(2(η)) and {(Dni , dni ), . . . , (Dnj , dnj )} ⊆

rght(2(η));

(iv) if T contains a node η such that synl(η) = 2, (Cn+1
2 , cn+1

2 ) ∈ lft(η),
and {(Dn+1

i , dn+1
i ), (Dn+1

j , dn+1
j )} ⊆ rght(η), where k + 1 ≤ i ≤ j ≤ k +

2, then {(Dn1 , dn1 ), . . . , (Dnk , dnk )} ⊆ lft(2(η)) and {(Cnl , cnl ), (Cnm, c
n
m)} ⊆

rght(2(η)).

Proof.

(i) Let us assume that there is a syntax tree T that does not have a node η
with the desired properties. We show that T contains an infinite branch
which is absurd. Indeed, using the first item from Proposition 3.14, we
see that synl(r) 6∈ LIT ∪ {3}. According to our assumption synl(r) 6= 2.
Hence, either synl(r) = ∨ or synl(r) = ∧. In either case, r has at least
one successor r1 such that (Cn+1

1 , cn+1
1 ) ∈ lft(r1) and (Dn+1

i , dn+1
i ) ∈

rght(r1). Thus, we can find the desired infinite branch by starting at r
and “following” the nodes that contain the models (Cn+1

1 , cn+1
1 ) on the left

and (Dn+1
i , dn+1

i ) on the right.
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(ii) The proof is the same as the one above modulo using (ii) from Proposi-
tion 3.14.

(iii) It is obvious that 2(Cn+1
1 , cn+1

1 ) = {(Cn1 , cn1 ), (Cn2 , c
n
2 )}. Using Def-

inition 2.2, we see that {(Cn1 , cn1 ), (Cn2 , c
n
2 )} ⊆ lft(2(η)). It fol-

lows immediately from Proposition 2.8 that (Cn1 , c
n
1 ) 6∈ rght(2(η))

and (Cn2 , c
n
2 ) 6∈ rght(2(η)). Given the geometry of the models

(Dn+1
i , dn+1

i ), . . . , (Dn+1
j , dn+1

j ), we obtain {(Dni , dni ), . . . , (Dnj , dnj )} ⊆
rght(2(η)).

(iv) Obviously, 2(Cn+1
2 , cn+1

2 ) = {(Dn1 , dn1 ), . . . , (Dnk , dnk )}. The fourth item
from Definition 2.2 implies that 2((Cn+1

2 , cn+1
2 )) ⊆ lft(2(η)). Using

Proposition 2.8, we see that none of the pointed models in 2(Cn+1
2 , cn+1

2 )
can appear on the right of 2(η). Given the geometry of the mod-
els (Dn+1

k+1 , d
n+1
k+1) and (Dn+1

k+2 , d
n+1
k+2), we see that {(Cnl , cnl ), (Cnm, c

n
m)} ⊆

rght(2(η)).
2

We are ready now to prove Theorem 3.9. It follows immediately from the
stronger statement below.

Theorem 3.18 For any n ≥ 1, any formula ϕ such that Cn |= ϕ and Dn |= ¬ϕ
has size at least 2n and any formula ψ such that Dn |= ψ and Cn |= ¬ψ has
size at least 2n.

Proof. The proof proceeds by induction on n.

Base step: The fact that the extended syntax tree T of any formula ϕ such
that C1 |= ϕ and D1 |= ¬ϕ has at least two leaves follows immediately from
Propositions 3.16. Using this and Proposition 2.6, we see that the size of any
formula ψ such that D1 |= ψ and C1 |= ¬ψ is at least 2.

Induction step: Let us consider the extended syntax tree T with a root r =
Cn+1 ◦Dn+1 of a formula ϕ such that Cn+1 |= ϕ and Dn+1 |= ¬ϕ. It follows
from Proposition 3.16, that we have two types of nodes.
(i) For the pointed model (Cn+1

1 , cn+1
1 ) and any pointed model (Dn+1

i , dn+1
i ),

where 1 ≤ i ≤ k, there is a node η in T such that {(Cn+1
1 , cn+1

1 )} = lft(η)
and (Dn+1

i , dn+1
i ) ∈ rght(η).

(ii) For the pointed model (Cn+1
2 , cn+1

2 ) and any pointed model (Dn+1
j , dn+1

j ),

where k+1 ≤ j ≤ k+2, there is a node ζ in T such that {(Cn+1
2 , cn+1

2 )} =
lft(ζ) and (Dn+1

j , dn+1
j ) ∈ rght(ζ).

It is obvious that a node η and a node ζ cannot coincide. Hence η and
ζ are the roots of two sub-trees Tη and Tζ of T with no common nodes.
Using item (i) from Lemma 3.17, we see that Tη contains a node η1 such
that synl(η1) = 2, {(Cn+1

1 , cn+1
1 )} = lft(η1), and (Dn+1

i , dn+1
i ) ∈ rght(η1);

similarly, it follows from Lemma 3.17 (ii), that Tζ contains a node ζ2 such
that synl(ζ2) = 2, {(Cn+1

2 , cn+1
2 )} = lft(ζ2), and (Dn+1

j , dn+1
j ) ∈ rght(ζ2);

Therefore, T has the shape shown in Figure 8. Namely,
• there are nodes η11 = (Cn+1

1 , cn+1
1 ) ◦ G1, . . . , η

l
1 = (Cn+1

1 , cn+1
1 ) ◦ Gl

such that each one of them has a syntax label 2; what is more,
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{(Dn+1
1 , dn+1

1 ), . . . , (Dn+1
k , dn+1

k )} ⊆ G1 ∪ . . . ∪Gl;
• there are nodes ζ12 = (Cn+1

2 , cn+1
2 ) ◦ H1, . . . , ζ

m
2 = (Cn+1

2 , cn+1
2 ) ◦

Hm such that each one of them has a syntax label 2; moreover,
{(Dn+1

k+1 , d
n+1
k+1), (Dn+1

k+2 , d
n+1
k+2)} ⊆ H1 ∪ . . . ∪Hm.

Cn+1 Dn+1

(Cn+1
1 ,cn+1

1 )
η11

G1

�

(Cn+1
2 ,cn+1

2 )
ζ12

H1

�
(Cn+1

1 ,cn+1
1 )

ηl1

Gl
�

(Cn+1
2 ,cn+1

2 )
ζm2

Hm
�

. . .

Fig. 8. An extended syntax tree T with root Cn+1 ◦ Dn+1.

Using item (iii) of Lemma 3.17, we see that, for any ηi1, we have
Cn = {(Cn1 , cn1 ), (Cn2 , c

n
2 )} = 2((Cn+1

1 , cn+1
1 )) = lft(2(ηi1)) while Dn =

{(Dn1 , dn1 ), . . . , (Dnk , dnk )} ⊆ rght(2(η11))∪. . .∪rght(2(ηl1)). According to the
induction hypothesis, any formula ϕ such that Cn |= ϕ and Dn |= ¬ϕ has
size at least 2n. Applying Proposition 2.7 and Proposition 2.9, we see that,
for any formulae ϕ1, . . . , ϕl for which lft(2(η11)) |= ϕ1

1, . . . , lft(2(ηl1)) |= ϕl
whereas rght(2(η11)) |= ¬ϕ1, . . . , rght(2(ηl1)) |= ¬ϕl, we have (|ϕ1| + . . . +
|ϕl|) ≥ 2n.

Similarly, using item (iii) of Lemma 3.17, for any ζi2, we see that
Dn = {(Dn1 , dn1 ), . . . , (Dnk , dnk )} = 2(Cn+1

2 , cn+1
2 ) = lft(2(ζi2)) while Cn ⊆

rght(2(ζ12 ))∪ . . .∪rght(2(ζm2 )). Again, according to the induction hypoth-
esis, any formula ψ such that Dn |= ψ and Cn |= ¬ψ has size at least 2n.
Applying Proposition 2.7 and Proposition 2.9, we see that, for any formu-
lae ψ1, . . . , ψm for which lft(2(ζ12 )) |= ψ1, . . . , lft(2(ζm)) |= ψm whereas
rght(2(ζ12 )) |= ¬ψ1, . . . , rght(2(ζm2 )) |= ¬ψm, we have (|ψ1|+ . . .+ |ψm|) ≥
2n.

Thus, the number of leaves of any extended syntax tree with root Cn+1 ◦
Dn+1 is at least 2n+1. Hence, any formula ϕ such that Cn+1 |= ϕ and Dn+1 |=
¬ϕ has size at least 2n+1. It follows from Proposition 2.6, that any formula
ψ such that Dn+1 |= ψ and Cn+1 |= ¬ψ has size at least 2n+1.

2

As usual, we can represent ML-formulae compactly as directed acyclic
graphs (DAGs) or modal circuits. The size of such a graph is the number
of its edges. To the best of our knowledge, the fact that ML-formulae repre-
sented as DAGs are exponentially more succinct than ML-formulae in their
tree representation seems to be taken for granted but we were unable to find
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a published proof although it can be easily obtained from the results in, e.g.,
[5], [6] or [10]. Nevertheless, we consider the corollary below to be yet another
confirmation of a widely known folklore fact rather than an original new result.

Corollary 3.19 Modal circuits are exponentially more succinct than ML-
formulae on the class of all Kripke models K.

Proof. According to Theorem 3.8, every ML-formula that is equivalent to the
formula δn from Definition 3.1 has size 2n. In the proof of Proposition 3.4,
we defined, for every δn, an equivalent ML-formula δ′n as follows. δ′1 = δ1
and δ′n+1 = δ′n ∧ 3(b ∧ δ′n) ∧ 3(¬b ∧ δ′n). Obviously, the formulae δ′n can be
represented as linearly growing DAGs as shown below. 2

b

♦

¬

♦

∧

DAG(δ′1) DAG(δ′n+1)

b

∧ ¬

∧♦

♦
∧

∧

DAG(δ′n)

4 Conclusion

With the benefit of hindsight, we can say that our Theorem 3.9 is related to
Theorem 4.1 from [5]. The latter can be interpreted as showing that there
is no sub-exponential equivalence preserving translation from the recursively
defined formulae ϕ1 = 3(b∨¬b) and ϕn+1 = 3¬4ϕn to ML, i.e., extending
ML with formulae 4ϕ leads to an exponential increase of succinctness with
respect to ML. However, since 3 is not definable in ConML on many classes
of frames [3], this result cannot in general be used to show that ConML is
exponentially more succinct than ML.

More results on the comparison between modal formulae and modal circuits
for extensions of ML and a list of open problems about lower bounds on formula
and circuit-size in modal logics can be found in [8].

A very general problem was pointed out in [16]. It consists of finding the
shortest possible modal equivalents of modally definable first-order conditions.
The potential importance of this question is witnessed by the fact that its initial
study has led to an extension of the class of Sahlqvist formulae [16].

As far as our present work is concerned, it would be nice to compare
in terms of succinctness PAL and ConML. We conjecture that PAL is
exponentially more succinct than ConML on K even for modal languages
with one diamond and one propositional symbol. We think that this remains
true on the class of S5-models commonly used in epistemic logic but we
do not know how many different diamonds and propositional symbols are
needed. Additionally, we conjecture that ConML is not exponentially more
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succinct than PAL but that ML-circuits are exponentially more succinct than
PAL-formulae.
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