
Bisimulation Safe Fixed Point Logic

Faried Abu Zaid 1

Mathematical Foundations of Computer Science, RWTH Aachen University
D-52056 Aachen

Erich Grädel 2

Mathematical Foundations of Computer Science, RWTH Aachen University
D-52056 Aachen

Stephan Jaax 3

Mathematical Foundations of Computer Science, RWTH Aachen University
D-52056 Aachen

Abstract

We define and investigate a new modal fixed-point logic, called bisimulation safe
fixed-point logic BSFP, which is a calculus of binary relations that extends both PDL
and the modal µ-calculus. The logic is motivated by concepts and results due to van
Benthem and Hollenberg on bisimulation safety which plays a similar role for binary
relations as the more familiar notion of bisimulation invariance plays for monadic
ones. We prove that BSFP is indeed bisimulation invariant for state formulae and
bisimulation safe for action formulae. We investigate the expressive power of BSFP
and show that it is not limited to monadic second-order definability. Further, we reveal
a close relationship of BSFP with context-free languages. We identify a fragment of
BSFP that is equivalent to the extension of PDL by context-free grammars. Although
BSFP is far more expressive than the modal µ-calculus, its model-checking problem
has the same complexity. On the other side, the satisfiability problem for BSFP is
highly undecidable.

Keywords: Modal Logic, Dynamic logic, Fixed Point Logic. Bisimulation Invariance,
Safety for Bisimulation.

1 Introduction

Bisimulation is a fundamental notion for the analysis of modal logics and the
behaviour of transition systems. Intuitively, two states v, v′ in transition systems

1 abuzaid@logic.rwth-aachen.de
2 graedel@logic.rwth-aachen.de
3 stephan.jaax@rwth-aachen.de



2 Bisimulation Safe Fixed Point Logic

T , T ′ are bisimilar if the set of possible traces from these states are equivalent
in a strong sense. Bisimilar states must share the same local properties and any
transition from v to w in T must have a transition of the same kind from v′ to
w′ in T ′ (and vice versa) such that w and w′ are again bisimilar.

Modal logics are invariant under bisimulation. This means that for any pair
of bisimilar nodes v ∈ T and v′ ∈ T ′, and for any modal formula ψ we have
that T , v |= ψ if, and only if T ′, v′ |= ψ. This bisimulation invariance holds not
only for the basic propositional modal logic ML, but also for the extensions to
stronger logics used in program analysis and verification such as the computation
tree logics CTL, CTL∗, the propositional dynamic logic PDL, and fixed-point
logics such as the modal µ-calculus Lµ and the modal iteration calculus MIC [3].
Since every pointed transition system T , v can be unraveled from v to a tree T ∗
with root v, such that T , v ∼ T ∗, v it follows that every bisimulation-invariant
logic has the tree model property : every satisfiable formula is true at the root of
a tree model. The tree model property is also algorithmically very important
since it paves the way to the use of automata-based methods for satisfiability
testing.

The relationship between modal logic and bisimulation can in fact be taken
an important step further to model-theoretic characterization theorems. It is a
classical result by van Benthem [12] that modal logic is precisely the bisimulation-
invariant fragment of first-order logic. This means that an arbitrary first-order
formula ϕ(x) (in a vocabulary of unary and binary relations) is invariant under
bisimulation if, and only if, it is equivalent to a formula of ML. An important
counterpart of van Benthem’s characterization is the Theorem by Janin and
Walukiewicz [10] saying that, in precisely the same sense, the modal µ-calculus
Lµ is the bisimulation-invariant fragment of monadic second-order logic MSO.
For more details, including characterizations theorems for several other variants
of bisimulations we refer to the survey [5] and the references there.

In this paper we study a related notion, called bisimulation safety, that has
been introduced by van Benthem (see [13,9]). To motivate this notion, we have
a closer look at the propositional dynamic logic PDL [7]. Recall that PDL is a
logic with a two-sorted syntax that distinguishes between state formulae and
programs, defined by the mutual induction

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ
α ::= E | ϕ? | α ∪ α | α;α | α∗

In a given transition system T over a set of states V , a state formula ϕ
defines a set of states, JϕKT = {v : T , v |= ϕ} ⊆ V , whereas a PDL-program α

defines a set of transitions, i.e. a binary relation JαKT ⊆ V × V . State formulae
and programs are linked in one direction by using programs as modalities to
form state formulae 〈α〉ϕ, saying that there is a transition in α leading to a
new state w at which ϕ holds, and in he other direction by the possibility to
form test programs ϕ? defining transitions (v, v) at states where ϕ holds.

When one says that PDL can be embedded into the modal µ-calculus Lµ and
that PDL is bisimulation-invariant, one just considers the state formulae. The



Abu Zaid, Grädel and Jaax 3

PDL-programs have no direct counterpart in Lµ for the trivial reason that Lµ is a
logic of state formulae only and the extension of any Lµ formula is a set of states
rather than a set of transitions. Thus, the notion of bisimulation invariance
applies to state formulae only, not to programs. However PDL-programs are
bisimulation-safe in the sense that they do not destroy bisimulations.

Definition 1.1 A binary global relation ϕ that associates with every transi-
tion system T (of a fixed vocabulary τ) a set of transitions JϕKT is safe for
bisimulations if every bisimulation Z between two transition systems T and T ′

is also a bisimulation between the expansions (T , JϕKT ) and (T ′, JϕKT
′
).

Typical bisimulation safe operations are the union and composition of
two binary relations whereas intersection and complementation are unsafe for
bisimulation. In the same sense as ML is the bisimulation-invariant fragment
of first-order logic, van Benthem [13] also proved a similar correspondence
between the bisimulation-safe fragment of first-order logic and the class of PDL-
programs that do not contain the Kleene star: A first-order formula ϕ(x, y) is
bisimulation-safe if, and only if it is equivalent to some ∗-free PDL-program.

This result, together with the Janin-Walukiewicz Theorem raises the follow-
ing questions.

(1) Can one characterize in a similar way the bisimulation-safe fragment of
monadic second-order logic?

(2) Is there an embedding of full PDL (state formulae and programs) into
a natural fixed-point logic L that is not only bisimulation-invariant for
state formulae but also bisimulation-safe for action formulae?

To the first question, an answer has been given by Marco Hollenberg [9] who
considered so-called µ-programs. These can be defined by applying the program
constructions of PDL not just to state formulae of PDL but to formulae of the
modal µ-calculus. As for PDL, one can define µ-formulae and µ-programs by a
mutual induction

ϕ ::= P | X | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ | µX.ϕ
α ::= E | ϕ? | α ∪ α | α;α | α∗

It is not difficult to see that µ-formulae (defined in this slightly nonstandard
way) are bisimuation-invariant, µ-programs are bisimulation-safe and that this
definition does not take us outside of monadic second-order logic. In particular,
this way of defining µ-formulae is equivalent to the standard definition of
the µ-calculus which does not refer to µ-programs at all. The main result of
Hollenberg says that µ-programs coincide with the bisimulation-safe fragment
of monadic second-order logic [9, Corollary 3.5.5]: An MSO-formula ϕ(x, y) is
safe for bisimulations if, and only if, it is equivalent to a µ-program.

It should be noted that the only enrichment of µ-programs with respect
to PDL-programs concerns the application of test-instructions ϕ? which now
refer to µ-formulae rather that just PDL-formulae. The iteration mechanism



4 Bisimulation Safe Fixed Point Logic

of µ-programs, however, remains limited to the Kleene star; in particular µ-
programs do not have a full least (or greatest) fixed-point mechanism for sets
of transitions.

In this paper, we shall address the second question and define a modal
fixed-point logic for defining sets of transitions, which we call bisimulation-
safe fixed-point logic BSFP. We shall analyse its expressive power and its
model-theoretic and algorithmic properties. In particular we shall prove that
BSFP is indeed safe for bisimulations whereas previously known extensions of
the modal µ-calculus either remain limited to monadic fixed-points or are not
bisimulation-safe. In particular, this is the case for the binary fragment of the
least fixed point logic LFP and for the two-dimensional µ-calculus by Otto [11].

We shall provide several presentations of our logic. The first has a minimal
syntax as a pure calculus of binary relations, with a projection operator to
recover monadic relations. The second presentation is based on a two-sorted
syntax, as for PDL and µ-programs, distinguishing between state formulae and
action formulae. The equivalence of the two presentations will reveal that BSFP
is the generalization of PDL- and µ-programs by admitting full binary fixed
point definitions rather than just the Kleene star. We shall see that while this
construction remains bisimulation-safe and does not increase the complexity
of the model-checking problem, it nevertheless makes the logic much stronger.
Contrary to the modal µ-calculus, BSFP admits infinity axioms, is not restricted
to MSO-definability and is intimately connected to context-free languages. We
shall see that all Boolean combinations of context-free languages are definable
in BSFP, and we shall identify a fragment of BSFP that is equivalent to the
extension of PDL by context-free grammars. As a consequence, the satisfiability
problem for BSFP is highly undecidable.

2 Background from logic

We assume that the reader is familiar with modal logic, first-order logic (FO),
monadic second-order logic (MSO), the extension of first-order logic by second-
order quantification ∃X and ∀X over sets of elements of the structure on
which the formula is evaluated. In contrast to second-order logic (SO), where
quantification over arbitrary relations (or functions) is admitted, MSO is a
much more manageable formalism; it is decidable on many interesting classes of
structures (on words and on trees in particular) and amenable to automata-based
methods.

We further assume that the reader is familiar with the modal µ-calculus
Lµ, briefly described in the introduction of this paper, which extends propo-
sitional modal logic ML by least (and greatest) fixed points, and which plays
a fundamental role in many areas of logic in computer science, in particular
for the specification and verification of computing systems. In finite model
theory, descriptive complexity and database theory, other fixed-point logics are
of central importance (see [6]). Relevant for the purpose of this paper is the
least fixed-point logic LFP which augments the power of first order logic by



Abu Zaid, Grädel and Jaax 5

least and greatest fixed points of definable relational operators and thus extends
FO in a similar way as the µ-calculus extends propositional modal logic. The
bisimulation safe fixed point logic BSFP that we are studying in this paper lies
between Lµ and LFP. We will briefly recall some basic definitions for LFP here.
For a more detailed account, we refer to [6].

Every formula ψ(R, x), where R is a relation symbol of arity k and x is a
tuple of k variables, defines, for any structure A of appropriate vocabulary, an
update operator F : P(Ak) → P(Ak) on the class of k-ary relations over the
universe A of A, namely F : R 7→ {a : (A, R) |= ψ(R, a)}. If ψ is positive in R,
that is, if every occurrence of R falls under an even number of negations, this
operator is monotone in the sense that R ⊆ R′ implies F (R) ⊆ F (R′). It is
well known that every monotone operator has a least fixed point and a greatest
fixed point, which can be defined as the intersection and union, respectively, of
all fixed points, but which can also be constructed by transfinite induction.

LFP is defined by adding to the syntax of first order logic the following
fixed point formation rule: If ψ(R, x) is a formula with a relational variable
R occurring only positively and a tuple of first-order variables x, and if t is a
tuple of terms (such that the lengths of x and t match the arity of R), then
[lfpRx.ψ](t) and [gfpRx.ψ](t) are also formulae, binding the occurrences of
the variables R and x in ψ.

The semantics of least fixed-point formulae in a structure A, providing
interpretations for all free variables in the formula, is the following: A |=
[lfpRx.ψ](t) if t

A
belongs to the least fixed point of the update operator defined

by ψ on A. Similarly for greatest fixed points.
Note that in formulae [lfpRx.ψ](t) one may allow ψ to have other free

variables besides x.
The duality between least and greatest fixed point implies that for any ψ,

[gfpRx.ψ](t) ≡ ¬[lfpRx.¬ψ[R/¬R]](t).

The width of an LFP-formula is the maximal number of free variables in its
subformulae. Further, an LFP-formula is parameter-free if in all its fixed-point
expressions [lfpRx .ϕ(R, x)](x) and [gfpRx .ϕ(R, x)](x) the only free variables
occurring in ϕ are those in x. It is well-known that every LFP-formula can
be translated into an equivalent one that is parameter-free, but this does, in
general, increase the arity of the fixed-point variables and the width of the
formulae.

Notice that any property of finite structures that is expressible by a fixed
LFP-formula can be decided in polynomial time. In fact, on linearly ordered
finite structures, precisely the polynomial-time decidable properties are LFP-
definable, but this is not true in the absence of a linear order (although certain
P-complete problems, such as winning regions of reachability games, remain
definable in LFP and even in the modal µ-calculus). Indeed, it is a major
open problem in finite model theory and descriptive complexity theory whether
there exists an extension of LFP that precisely captures the polynomial-time
properties of arbitrary (ordered or unordered) finite structures (see [6]).



6 Bisimulation Safe Fixed Point Logic

Evaluation problems in logic, where the formula is not fixed, but part of
the input, are more difficult to analyze. The model checking problem for a
logic L is the problem to decide, given a formula ψ ∈ L and a finite structure
K (with elements instantiating the free variables of ψ) whether the formula is
true in K. Concerning the complexity of the model-checking problem for LFP
and its fragments the following is known (see [6, Chapter 3.3] for details and
references).

• For LFP-formulae of unbounded width, model-checking is Exptime-complete.

• For LFP-formulae of bounded width that may contain parameters it is
Pspace-complete.

• For parameter-free LFP-formulae of bounded width, as well as for the modal
µ-calculus, the model-checking problem is in UP ∩ Co-UP and Ptime-hard.
It is open whether it is solvable in polynomial time, and this is equivalent
to the question whether winning regions of parity games are computable in
polynomial time.

3 Bisimulation Safe Fixed Point Logic

In this section, we introduce several presentations of bisimulation safe fixed-point
logic BSFP. We shall see that BSFP does not have the finite model property
and that it is bisimulation invariant for state formulae and bisimulation safe for
action formulae. This will also imply that BSFP is not contained in monadic
second-order logic. Finally we will discuss simultaneous fixed points and present
a normal form for BSFP.

We start by giving a minimal syntax for BSFP as a pure calculus of binary
relations.

Minimal syntax. Let τ be a vocabulary of monadic predicates Pi and binary
action predicates Ea, and let Z1, Z2 . . . be a collection of binary predicate
variables. Formulae of BSFP in minimal syntax are build by the grammar

α ::= ⊥ | Pi? | Zj | Ea | α ∪ α |∼ α | α ◦ α | µZj .α

where, for formulae µZj .α, we require that every free occurrence of Zj in α is
in the scope of an even number of ∼ symbols.

Semantics. Let T = (V, (P Ti )i, (E
T
a )a) be a transition system (which inter-

prets all monadic predicates Pi by P Ti ⊆ V , all transitions relations Ea and
all variables Z that occur free in α as subsets of V × V denoted by ETa and
ZT , respectively. When it is clear from the context, we will often omit the
superscripts in the notation.) The extension JαKT of a formula α in T is defined
inductively by:

• J⊥KT := ∅.

• JPi?K
T

:= {(v, v) ∈ V T × V T : v ∈ PiT }.
• JEaK

T
:= Ea

T for every a ∈ ACT.



Abu Zaid, Grädel and Jaax 7

• Jα1 ∪ α2K
T

:= Jα1K
T ∪ Jα2K

T
.

• Jα1 ◦ α2K
T

:= {(u,w) ∈ V T × V T : ∃v (u, v) ∈ Jα1K
T ∧ (v, w) ∈ Jα2K

T }.
• J∼ αKT := {(v, v) ∈ V T × V T : ∀v′ (v, v′) 6∈ JαKT }.
• The µ-operator is a binary least-fixed-point operator:

JµZ.αKT :=
⋂{

R ⊆ V T × V T : JαKT [Z:=R] ⊆ R
}

Some simple but important definable relations are the diagonal D :=∼ ⊥
and the projection to the first component, denoted ↓ α :=∼∼ α. By definition
J↓ αKT = {(v, v) ∈ V T × V T : ∃v′(v, v′) ∈ JαKT }.

We next present an extended syntax for BSFP which relates this logic to
PDL and µ-programs in the sense that it defines state formulae and action
formulae by mutual induction. In fact BSFP can be seen as the extension of
PDL by the possibility to form unary and binary fixed points.

Two-sorted syntax. For a set X1, X2, . . . of monadic variables and a set
Z1Z2, . . . of binary variables, the state and action formulae are defined by

ϕ ::= Pi | Xi | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ | µXi.ϕ

α ::= D | ∅ | Ea | Zk | α ◦ α | α ∪ α | ϕ? | µZj .α

Again we require that for fixed-point formulae µXi.ϕ and µZj .α, every free
occurrence of Xi or Zj is the scope of an even number of ¬ symbols.

Semantics. For state formulae the extension JϕKT is defined in the standard
way, as for PDL and µ-programs. For action formulae, the extensions are defined
as in the minimal syntax. We use the expression [α]ϕ as shorthand for ¬〈α〉¬ϕ
and ϕ∧ψ as a shorthand for ¬(¬ϕ∨¬ψ). As usual we write T , v |= ϕ to denote

that v ∈ JϕKT and T , (v, w) |= α to denote that (v, w) ∈ JαKT .
It is not difficult to see that the two presentations of BSFP are equivalent.

Theorem 3.1 For every BSFP state formula ϕ in two-sorted syntax there is
a formula ϕ̂ in minimal syntax such that T , v |= ϕ ⇔ T , (v, v) |= ↓ ϕ̂ and for
every action formula α there is an equivalent formula α̂ in minimal syntax.

Proof. The translations from ϕ to ϕ̂ and from α to α̂ leave the atomic predicates
and variables invariant, but monadic variables Xi of ϕ and α are considered as
binary variables in ϕ̂ and α̂. We then inductively translate the formulae by the
following rules:

• if ϕ = ϕ1 ∨ ϕ2, we set ϕ̂ := ϕ̂1 ∪ ϕ̂2,

• if ϕ = ¬ϕ1, we set ϕ̂ :=∼ ϕ̂1,

• if ϕ = 〈α1〉ϕ1, we set ϕ̂ := α̂1 ◦ ϕ̂1,

• if ϕ = µX.ϕ1, we set ϕ̂ := µX. ↓ ϕ̂1.

• if α = α1 ⊗ α2 with ⊗ ∈ {◦,∪} simply set α̂ := α̂1 ⊗ α̂2,

• if α = ϕ1? set α̂ := ↓ ϕ̂1, and



8 Bisimulation Safe Fixed Point Logic

Fig. 1. Sketch of T

P

P

P

P

· · ·a

b

a a

b

b

b

a

b

b

• if α = µZ.α1 set α̂ := µZ.α̂1

It is easily verified that this translation gives us a formula with the desired
properties in minimal syntax. 2

Example 3.2 (i) The action formula µZ.(D ∪ (Z ◦ Ea)) defines the set of
pairs of states connected by a path of the form a∗.

(ii) The action formula µZ.(D ∪ (Ea ◦Z ◦Eb)) defines the set of pairs of states
connected by a path of the form anbn for n ≥ 0.

We generalize these examples to show that BSFP admits formulae that
only have infinite models. We use a construction taken essentially from [8] for
PDLCFG, a logic that is in fact closely related to BSFP (see Sect. 5 below).

Theorem 3.3 BSFP does not have the finite model property.

Proof. For BSFP action formulae α, β let α∗ := µZ.(D ∪Z ◦ α) and α∆β∆ :=
µZ.(D ∪ α ◦ Z ◦ β). We claim that the formula

ϕ = (P ∧ [E∗a ]〈Ea ◦ E∗b 〉P ) ∧ [(Ea ∪ Eb)∗ ◦ Eb ◦ Ea]⊥
∧ [E∗a ◦ Ea ◦ E∆

a E
∆
b ]¬P ∧ [E∆

a E
∆
b ◦ Eb]⊥

is satisfiable but has no finite model. Consider the structure

T = ({w ∈ {a, b}∗ | w = anbm with n ≥ m}, Ea, Eb, P ) with

Ea = {(an, an+1) | n ≥ 0},
Eb = {(anbm, anbm+1) | n > m} and

P = {anbn | n ≥ 0}.

Obviously T fulfils all conjuncts of ϕ from the node ε (c.f. Figure 1), hence
T , ε |= ϕ. Now suppose T ′, v |= ϕ for some finite transition system T ′ over



Abu Zaid, Grädel and Jaax 9

the signature {P,Ea, Eb}. We can interpret T ′ as a finite automaton with
initial state v and accepting states P . The regular language L accepted by this
automaton is determined by the labels of the paths connecting v to a state in
P . Therefore, the second conjunct enforces that L ⊆ a∗b∗ and the third and
fourth conjunct enforce that L ⊆ {anbn | n ≥ 0}. Given the other parts of
the formula, the first conjunct enforces that for every n ≥ 0 anbn ∈ L. Thus
L = {anbn | n ≥ 0} which is not regular. A contradiction. 2

Corollary 3.4 BSFP is strictly more expressive than the modal µ-calculus.

We are now ready to show that BSFP has the desired properties with respect
to bisimulation.

Theorem 3.5 State formulae of BSFP are bisimulation invariant, and action
formulae of BSFP are safe for bisimulation.

Proof. We have to prove that, for every bisimulation S between two transition
systems T and T ′ with (v, v′) ∈ S, it holds that

(1) v and v′ satisfy the same BSFP state formulae, and

(2) whenever (v, w) ∈ JαKT for an action formula α, then there exists a w′

such that (w,w′) ∈ S and (v′, w′) ∈ JαKT
′
.

By Theorem 3.1 it suffices to establish (2) for formulae in minimal syntax.
Claim (1) then also follows. Indeed, suppose that there is BSFP state formula
ϕ such that T , v |= ϕ but T ′, v′ 6|= ϕ. By Theorem 3.1 there is a formula ϕ̂
such that T , (v, v) |=↓ ϕ̂ but T ′, (v′, v′) 6|=↓ ϕ̂ . But then ↓ ϕ̂ would be unsafe
for bisimulation.

Apart from the least fixed-point operator µ, every BSFP-operator has an
analogous counterpart in PDL and PDL-operators are known to be safe for
bisimulation. It thus suffices to show that if α is safe for bisimulation, then so
is µZ.α. But this follows by a straightforward induction over the stages αη of
the least fixed point induction defined by α. Indeed, for all ordinals η and all
transition systems T , T ′ it holds holds that if (v, w) ∈ JαηKT , then there exists

a state w′ ∈ V T ′ such that (v′, w′) ∈ S and (w,w′) ∈ JαηKT
′
.

Zero case: For η = 0 the claim is trivial.

Successor case: Let (v, w) ∈ Jϕη+1KT . Hence, by definition, we have that

(v, w) ∈ JϕKT [X:=JϕηKT ]. Applying the induction hypothesis, we obtain that

there exists a w′ ∈ V T with (v′, w′) ∈ S and (w,w′) ∈ JϕKT
′
[
X:=JϕηKT

′]
which

is, by definition, equivalent to (w,w′) ∈ Jϕη+1KT
′

.

Limit case: Let λ be a limit ordinal such that (v, v′) ∈ JϕλKT . Thus we have

that (v, v′) ∈ JϕηKT for some η < λ. Applying the induction hypothesis, we

obtain that there exists a w′ ∈ V T ′ with (v′, w′) ∈ S and (w,w′) ∈ JϕηKT and

thus, (w,w′) ∈ JϕλKT
′

. 2

Corollary 3.6 BSFP is not a fragment of MSO.



10 Bisimulation Safe Fixed Point Logic

Proof. Consider the infinity axiom in BSFP presented in the proof of Theo-
rem 3.3. If it were equivalent to an MSO-formula it would, being bisimulation
invariant, also be equivalent to a formula in Lµ. But this is impossible since Lµ
has the finite model property. 2

Simultaneous Fixed Points. As for the µ-calculus and other fixed-point
logics one can generalize also BSFP to admit systems of simultaneous fixed
points. These do not increase the expressive power but sometimes allow for
more straightforward formalisations. Here one associates with any tuple ψ =
(ψ1, . . . , ψk) of formulae ψi(X) = ψi(X1, . . . , Xk), in which all occurrences of
all Xi are positive, a new formula ϕ = µX .ψ. The semantics of ϕ is induced

by the least fixed point of the monotone operator ψT mapping X to X
′

where

X ′i = JψiK
(T ,X)

. More precisely, K, (v, w) |= ϕ iff (v, w) is an element of the
first component of the least fixed point of the above operator. It is known
that simultaneous least fixed points can be eliminated in favour of nested
individual fixed points by the so-called Békic principle (see e.g. [1, page 27]).
Indeed, µXY . [ψ(X,Y ), ϕ(X,Y )] is equivalent to µX.ψ(X,µY.ϕ(X,Y )), and
this equivalence generalizes to larger systems in the obvious way.

On this basis, we now introduce a normal form for BSFP action formulae
which will be helpful when we investigate the expressive power of BSFP.

Definition 3.7 A action formula α is in normal form if α = µZ(αZ1
, . . . , αZk)

with αZ` =
⋃
i βi and βi = γi1 ◦ · · · ◦ γini where γij is either a binary predicate

(or binary predicate variable) or ϕ?.

Lemma 3.8 For every BSFP action formula α there is an equivalent formula
α̂ in normal form.

Proof. Let α be a action formula. We obtain α̂ by the following procedure:
By applying the Békic principle we get that α ≡ µZ(αZ1

, . . . , αZk) where the
αZi are ∪, ◦ combinations formed from binary predicate symbols (and variables)
and tests. Such an αZ` can be transformed into the form

⋃
i(βi1 ◦ · · · ◦ βini) by

the equivalences α ◦ (β ∪ γ) ≡ α ◦ β ∪ α ◦ γ and (α ∪ β) ◦ γ ≡ α ◦ γ ∪ β ◦ γ. 2

4 Relationship with other fixed-point logics and
model-checking

Clearly bisimulation safe fixed-point logic BSFP extends the modal µ-calculus
Lµ and can be embedded into the least fixed-point logic LFP, in short Lµ ≤
BSFP ≤ LFP. Hence every property expressible in BSFP can be checked in
polynomial time, and there exist P-complete properties that are definable in
BSFP. Modal fixed-point logics with a similar status are the k-dimensional
µ-calculi Lkµ by Martin Otto [11], for any k ≥ 1. We investigate the relationship
with these other fixed-point logics more closely.

It is known that formulae of the µ-calculus can be translated into parameter-
free LFP-formulae of width two. We observe that there is similar embedding of
BSFP into LFP which, however, produces formulae of width three.



Abu Zaid, Grädel and Jaax 11

Proposition 4.1 There is a linear translation mapping every BSFP-formula
ϕ to an equivalent LFP-formula ϕ#(x, y) which is parameter-free and of width
at most three.

The translation is straightforward; it maps Pi to x = y ∧ Piy and ∼ ϕ to
x = y ∧ ¬∃y : ϕ#(x, y), translates ∨ and least fixed-points literally, and only
needs to introduce a third variable for expressing composition: (ϕ◦ψ)#(x, y) :=
∃z(ϕ#(x, z) ∧ ψ#(z, y))

Corollary 4.2 The model-checking problem for BSFP is in UP ∩ Co-UP and
Ptime-hard. It is polynomial time equivalent to the model-checking problem of
the modal µ-calculus.

We next consider the relationship of BSFP with the logic L2
µ from [11] which

is also a modal fixed-point calculus of binary relations. On transition systems
T with universe V and a vocabulary of monadic relations Pi and, for simplicity,
just one binary relation E, the k-dimensional µ-calculus Lkµ is defined by taking

the usual µ-calculus Lµ on an expanded system T k with universe V k monadic
relations Pij and binary relations Ej , for j = 1, . . . , k and additional binary
relations Eσ, for every substitution σ : {1, . . . , k} → {1, . . . , k}. The relations
Pij and Ej on V k are given by Pi and E on the jth component and the relations
Eσ contain the transitions from (v1, . . . , vk) to (vσ(1), . . . , vσ(k)). The meaning

of an Lkµ-formula ψ on T is given as the k-ary relation of all tuples v such that

T k, v |= ψ (in the sense of Lµ).
A typical relation expressible in L2

µ is bisimilarity. Two nodes v1, v2 are
bisimilar in T if T , v1, v2 |= νZ.(

∧
i(Pi1 ↔ Pi2) ∧ [1]〈2〉Z ∧ [2]〈1〉Z).

Martin Otto proved that the multi-dimensional µ-calculus Lωµ =
⋃
k∈ω L

k
µ

captures precisely the bisimulation-invariant fragment of polynomial time. Given
that BSFP and L2

µ both are fixed-point calculi that extend the modal µ-calculus
to binary relations while respecting bisimulation in some sense, the question
arises of how the expressive power of L2

µ and BSFP compare. A closer look
reveals that the two logics respect bisimulations in a rather different sense. First
of all we observe that L2

µ is closed under all Boolean operations and can therefore
not be bisimulation safe. For instance, the formula that defines bisimilarity of
two nodes in a given transition system is clearly not safe for bisimulation. On
the other side L2

µ is component-wise invariant under bisimulations: For any
two pairs v, w ∈ T and v′, w′ ∈ T ′ such that v and v′ but also w and w′ are
bisimilar, and any formula ψ ∈ L2

µ it follows that T , v, w |= ψ if, and only if
T ′, v′, w′ |= ψ (see [11]). However, there are quite simple BSFP-formulae, such
as for instance the diagonal D, that violate this component-wise bisimulation
invariance.

Proposition 4.3 Concerning expressive power, the two logics BSFP and L2
µ

are incomparable.



12 Bisimulation Safe Fixed Point Logic

5 Flat BSFP

In this section we define the flat fragment of BSFP and show that it is equivalent
to PDLCFG, the extension of PDL by context-free grammars. We first recall the
definition of PDLCFG from [8] which extends the definition of PDL by a more
powerful construction for programs: The set of programs of PDLCFG consists
of all context-free grammars α whose terminals are atomic actions and test
formulae. Such a grammar defines a language L(α) ⊆ (A ∪ {ϕ1?, . . . , ϕn?})∗.
The binary relation, defined by α on a transition system T is the set of pairs
(u, v) such that there is path from u to v in T (expanded by Jϕ1?KT , . . . , Jϕn?KT )
labelled by a word in L(α). PDLCFG is known to be much more powerful than
PDL. For details, see [8]. We next define Flat BSFP.

Definition 5.1 Flat BSFP is the fragment of all BSFP formulae formed by
the following rules:

ϕ ::= Pi | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ
α ::= Ea | Zi | α ◦ α | α ∪ α | ϕ? | µZi.α

For tests ϕ? we additionally demand that ϕ is closed, which means ϕ does not
contain any free variables.

Theorem 5.2 Flat BSFP ≡ PDLCFG

Proof. Since the building rules for state formulae of flat BSFP and PDLCFG

coincide, we only need to show how to translate action formulae. First we show
how to translate PDLCFG programs into BSFP action formulae. We need to show
that for every set {ϕ1, . . . , ϕn} ⊆ PDLCFG and every context-free language L
over the alphabet A∪{ϕ1?, . . . , ϕn?} the global relation defined by L is definable
by a flat BSFP action formula. Let G be a context-free grammar with non-
terminals Γ = {Z1, . . . , Zn}, terminals Σ = A∪{ϕ1?, . . . , ϕn?} and start-symbol
Z1. We may assume that we have already constructed BSFP formulae ϕ̂1, . . . , ϕ̂n
such that ϕ̂i is equivalent to ϕi. With every string s = s0s1 · · · sj ∈ (Σ∪Γ)∗ we
associate the BSFP-formula α(s) := α(s0) ◦α(s1) ◦ . . . ◦α(sj) where α(sk) = sk,
if sk ∈ Γ, α(sk) = Esk for sk ∈ A and α(sk) = ϕ̂i? for sk = ϕi?. For instance
α(aZϕ1?Z) = Ea ◦ Z ◦ ϕ̂1? ◦ Z. Furthermore, with every production-rule

Zi −→ A1|A2| . . . |Ak with Aj ∈ (Σ ∪ Γ)∗

we associate a BSFP action formula αZi :=
⋃

1≤j≤k α(Aj), and claim that

α = µZ.(αZ1 , . . . , αZn) defines the same relation as G. To see this one recalls
that L(G) is the simultaneous least fixed-point, projected on the start symbol
Z1 of the system of equations defined by the production rules of G [2]. For a
given transition system T let (Zη1 , . . . , Z

η
n) denote the η-fold approximation of

the least fixed point of the formulae (αZ1
, . . . , αZn) over T and (Xη

1 , . . . , X
η
n)

be the η-fold approximation of the fixed point of the operator associated with
the grammar G. One can show via induction that for all ordinals η we have
(u, v) ∈ Zη` if, and only if there is a path from u to v labelled by a word in Xη

` .



Abu Zaid, Grädel and Jaax 13

For the other direction, it suffices to find for every flat action formula α a
context-free grammar Gα over atomic actions and PDLCFG tests that defines
the same relation as α. By Lemma 3.8 we have that α ≡ µZ(αZ1

, . . . , αZk)
with αZ` =

⋃
i βi. Every βi is a composition of atomic formulae and tests

βi = βi1 ◦ · · · ◦ βini . We assign to each such composition a word w(βi) =

w(βi1)w(βi2) . . . w(βini). Here we set w(Ea) = a,w(Zi) = Zi and w(ϑ?) = ϑ̂?

where ϑ̂ is an PDLCFG formula equivalent to ϑ (which exists by the induction
hypothesis). For every αZ` =

⋃
1≤i≤n` βi we add the production rule

Z` −→ w(β1)| . . . |w(βn`).

Again by an induction over the stages of the fixed point iteration one shows
that for every transition system T and every pair of nodes (u, v) we have that
T , (u, v) |= α if, and only if, there is a path from u to v labelled by a word in
L(Gα). 2

We therefore know that PDLCFG ≤ BSFP and even PDLCFG � BSFP since
it is known that PDLCFG is incomparable to the modal µ-calculus, which is
a fragment of BSFP. The satisfiability problem for PDLCFG is known to be
Σ1

1-complete [8].

Corollary 5.3 The satisfiability problem for BSFP is Σ1
1-hard.

The precise complexity level of Sat(BSFP) remains open. It is known that
the satisfiability problem for LFP is in the stronger class Σ2

1 [4], and we do not
know whether satisfiablity for BSFP is as hard as for LFP, or Σ1

1-complete.

We quickly turn our attention to another fragment of BSFP. A BSFP action
formula is test-free if it does not contain any test ϕ?. Obviously every test-free
action formula is flat. An inspection of the proof of Theorem 5.2 reveals that
every test-free action formula can be translated into a context-free grammar
over terminals in A (i.e. without tests) and vice versa. Hence we obtain the
following result for test-free action formulae.

Corollary 5.4 A global binary relation R is definable by a test-free BSFP
action formula if, and only if there is a context-free language L ⊆ A∗ such that
for all transition systems T it holds that (u, v) ∈ RT iff there is a path from u
to v that is labelled by some word in L.

6 Definability of Languages

An important aspect of the expressive power of a logic is the question which
classes of languages it can define. There are several possibilities to model the
specification of a language by a BSFP formula. The standard way is to identify
words with certain structures and associate with a BSFP-formula the language
of all words such that the corresponding word structure is a model of the formula.
With a finite word w = w0w2 . . . wn−1 ∈ Σn of length n ≥ 0 we may associate the
(unlabelled) transition system T (w) := ({0, . . . , n}, (Ea)a∈Σ) where (i, j) ∈ Ea
iff j = i + 1 and wi = a. A BSFP state formula ϕ then defines the language



14 Bisimulation Safe Fixed Point Logic

L(ϕ) := {w ∈ Σ∗ : T (w), 0 |= ϕ}. It is also possible to specify a language by an
action formula α, by defining L(α) := {w ∈ Σ∗ : T (w), (0, |w|) |= α}. It is not
hard to see that these two definitions capture the same class of languages.

Lemma 6.1 A language L ⊆ Σ∗ is definable by a BSFP state formula iff it is
definable by a BSFP action formula.

Proof. Let ϕ be a BSFP formula over the signature τ = {Ea | a ∈ Σ}. Consider
the action formula α = µZ.(ϕ? ∪ Z ◦ E) where E is shorthand for

⋃
a∈ΣEa.

Obviously for a word w we have

JαKT (w)
= {(i, j) | 0 ≤ i ≤ j ≤ |w| and T (w), i |= ϕ}

and therefore T (w), (0, |w|) |= α iff T (w), 0 |= ϕ.
Now consider an action formula α over τ . For ϕ = 〈α〉[E]⊥ we have by

definition that T (w), 0 |= ϕ iff there is a j such that (0, j) ∈ JαKT (w)
and j has

no successor in T (w) which means j = |w|. 2

While the modal µ-calculus and PDL have on words the same expressive
power as MSO and therefore capture exactly the regular languages, from
Corollary 5.4 we know that even the test-free BSFP formulae capture a much
richer class of languages.

Corollary 6.2 A language L ⊆ Σ∗ is context-free if, and only if, it is defin-
able by a test-free BSFP action formula. As a consequence, every Boolean
combination of context-free languages is BSFP-definable.

Example 6.3 For the context-free languages

L1 = {anbncm | n,m ∈ N} and L2 = {ambncn | n,m ∈ N}

let ϕL1
, ϕL2

be BSFP formulae that define the respective languages. Then
ϕL1 ∧ ϕL2 defines the context-sensitive language {anbncn | n ∈ N}.

We remark that the way we associated structures with words differs slightly
from the way this is usually done when one proves that MSO or Lµ capture
exactly the regular languages. There one associates with every word w the
structure T ′(w) = ({0, . . . , |w| − 1}, (Pa)a∈Σ, E) with Pa = {i | wi = a} and
E = {(i, i+ 1) | 0 ≤ i ≤ |w| − 2}. However, it is not hard to see that on this
class of structures BSFP is not less expressive.

Lemma 6.4 For every BSFP action formula α there is a formula α̂ such that

T (w), (0, |w|) |= α⇔ T ′(w), (0, |w|) |= α̂.

Proof. From α construct α̂ in the following way: first replace every sub-formula
Ea by Pa? and then replace every formula of the form α1 ◦ α2 by α1 ◦E ◦ α2.2

A different approach for defining a language with BSFP is to consider the
structure TΣ∗ = (Σ∗, (Ea)a∈Σ) with ETΣ∗

a = {(w,wa) | w ∈ Σ∗}. We say a
BSFP formula α defines a language L in TΣ∗ if L = {w ∈ Σ∗ | TΣ∗ , (ε, w) |= α}



Abu Zaid, Grädel and Jaax 15

Theorem 6.5 A language L is BSFP definable in TΣ∗ if, and only if, it is
context-free.

Proof. We claim that for every action formula α there is a test-free action
formula α̂ such that JαKTΣ∗ = Jα̂KTΣ∗ . Since BSFP state formulae are invariant
under bisimulation and every pair of nodes in TΣ∗ is bisimilar, every test ϕ?
holds either for every node or for no node at all. We can therefore replace every
test in α either by D or by ∅ and arrive at a test-free BSFP formula with the
same extension in TΣ∗ . With Corollary 5.4 we get that α̂ corresponds to some
context-free language L and therefore {w ∈ Σ∗ | TΣ∗ , (ε, w) |= α} = L. 2

References

[1] Arnold, A. and D. Niwiński, “Rudiments of µ-calculus,” North Holland, 2001.
[2] Bertoni, A., C. Choffrut and R. Radicioni, The inclusion problem of context-free languages:

Some tractable cases, in: Developments in language theory, Springer, 2009, pp. 103–112.
[3] Dawar, A., E. Grädel and S. Kreutzer, Inflationary fixed points in modal logic, ACM

Transactions on Computational Logic 5 (2004), pp. 282 – 315.
[4] Dawar, A. and Y. Gurevich, Fixed point logics, Bulletin of Symbolic Logic 8 (2002),

pp. 65–88.
[5] Grädel, E. and M.Otto, The freedoms of (guarded) bisimulation, in: Johan F.A. K.van

Benthem on Logical and Informational Dynamics, Springer, 2014 p. To appear.
[6] Grädel, E. et al., “Finite Model Theory and Its Applications,” Springer, 2007.
[7] Harel, D., D. Kozen and J. Tiuryn, “Dynamic Logic,” MIT Press, 2000.
[8] Harel, D., A. Pnueli and J. Stavi, Propositional dynamic logic of nonregular programs,

Journal of Computer and System Sciences 26 (1983), pp. 222–243.
[9] Hollenberg, M., “Logic and Bisimulation,” Ph.D. thesis, Utrecht University (1998).

[10] Janin, D. and I. Walukiewicz, On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic, in: Proceedings of 7th International
Conference on Concurrency Theory CONCUR ’96, number 1119 in Lecture Notes in
Computer Science (1996), pp. 263–277.

[11] Otto, M., Bisimulation-invariant Ptime and higher-dimensional mu-calculus, Theoretical
Computer Science 224 (1999), pp. 237–265.

[12] van Benthem, J., “Modal Correspondence Theory,” Ph.D. thesis, University of Amsterdam
(1976).

[13] van Benthem, J., Program constructions that are safe for bisimulation, Studia Logica 60
(1998), pp. 311–330.


	Introduction
	Background from logic
	Bisimulation Safe Fixed Point Logic
	Relationship with other fixed-point logics and model-checking
	Flat BSFP
	Definability of Languages
	References

