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abstract. We propose a new sequent calculus for bi-intuitionistic logic

which sits somewhere between display calculi and traditional sequent calculi

by using nested sequents. Our calculus enjoys a simple (purely syntactic)

cut-elimination proof as do display calculi. But it has an easily derivable

variant calculus which is amenable to automated proof search as are (some)

traditional sequent calculi. We first present the initial calculus and its cut-

elimination proof. We then present the derived calculus, and then present a

proof-search strategy which allows it to be used for automated proof search.

We prove that this search strategy is terminating and complete by showing

how it can be used to mimic derivations obtained from an existing calculus

GBiInt for bi-intuitionistic logic. As far as we know, our new calculus is

the first sequent calculus for bi-intuitionistic logic which uses no semantic

additions like labels, which has a purely syntactic cut-elimination proof,

and which can be used naturally for backwards proof-search.
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1 Introduction

Bi-intuitionistic logic (BiInt) is obtained by extending intuitionistic logic
with a binary connective variously called “subtraction” or “exclusion” or
even “co-implication”, which we write as −<. Intuitively, the formula A−<B
reads “A excludes B”. We assume the reader is familiar with the Kripke
semantics for intuitionistic logic using a binary reflexive and transitive re-
lation ≤. Then the forcing relation for the exclusion operator is defined
as

w 
 A−<B iff ∃v ≤ w.v 
 A and v 6
 B.

In a sequent setting, the introduction rules for exclusion are dual to the
introduction rules for implication, e.g., the left-introduction rule −<L is
dual to the right-introduction rule →R for implication as shown below:

Γ, A ⊢ B
Γ ⊢ A→ B

→R
A ⊢ B,∆
A−<B ⊢ ∆

−<L

If we remove the implication connective from bi-intuitionistic logic, we ob-
tain a logic called dual intuitionistic logic. Both intuitionistic logic and dual
intuitionistic logic have simple sequent calculus formulations which enjoy cut
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elimination. However, the combined logic has surprisingly no known simple
sequent calculus formulation which enjoys true cut-elimination.

Rauszer [21] formalised a sequent calculus for BiInt, but it was later found
to fail cut elimination (see [5] for a counterexample). Crolard’s work [7]
is based upon Rauszer’s calculus and so also fails cut-elimination. In re-
sponse, Pinto and Uustalu announced a labelled sequent calculus with cut-
elimination for BiInt [28], but have yet to provide a full paper outlining
details. Their calculus does not provide a purely syntactic account of BiInt
since it uses labelled formulae of the form x : A to capture the semantic no-
tion that “Kripke world x makes formula A true”. Independently, a purely
syntactic cut-free calculus for (proof-search in) BiInt was given by Postniece
(previously Buisman) and Goré [5, 13] by combining a “refutation” calcu-
lus and a “provability” calculus. However, their cut-elimination result is
obtained indirectly via a semantic argument which shows that the cut-free
fragment of their calculus is complete with respect to the Kripke semantics
of BiInt. Thus the only truly cut-free calculus for BiInt appears to be the
display calculus due to Goré [12] (see [30] for a variation).

Although display calculi were not designed for automated proof-search
there is a surprising lack of interest in the study of proof search for display
logics: the only exceptions are the works of Wansing [29] and Restall [23].
The main difficulty in using display calculi for proof search are the invertible
structural display postulate rules which are at the heart of display calculi.
Although these rules guarantee the display property, they allow “pointless”
shuffling of structures and easily lead to non-termination of proof search if
applied naively. Another issue is the presence of explicit contraction and
weakening rules in display calculi which are couched in terms of structures
rather than formulae. Replacing these rules with ones based on formulae
can break one of the conditions for a display calculus, namely, the (C6/C7)
condition that “each rule is closed under simultaneous substitution of arbi-
trary structures for congruent parameters” [18]. Absorbing them completely
to obtain a “contraction-free” calculus is thus not an obvious step.

Here, we present two sequent-like calculi LBiInt1 and LBiInt2 for bi-
intuitionistic logic which sit somewhere in between display calculi and tra-
ditional sequent calculi in terms of cut-elimination and proof-search.

LBiInt1: The calculus LBiInt1 shares some features of display calculi, in
that it has certain structural rules that allow shuffling of structures
in a sequent, akin to the display postulates used in display calculi
to display a formula nested in a structure. The syntactic judgments
in LBiInt1 can be seen as a tree of (traditional) sequents, and the
structural rules can be used to “display” a sequent by bringing it to
the root of an equivalent tree. The logical rules of LBiInt1 are similar
to those in Gentzen’s traditional sequent calculus, as they apply only
to the topmost sequent in the tree of sequents. The virtue of LBiInt1
is twofold: its contraction and weakening rules can be restricted to
formulae while its purely syntactic cut-elimination proof is simple and
very similar to the cut-elimination proof for display calculi.
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LBiInt2: The calculus LBiInt2 is a refinement of LBiInt1 and is obtained by
absorbing all the structural rules of LBiInt1 into the logical rules. The
calculus LBiInt2 is easily shown to be sound, since its rules are deriv-
able in LBiInt1. But from a proof-search perspective, we are able to
associate a terminating and systematic backward proof-search strat-
egy for applying the rules of LBiInt2. However, we currently do not
have a direct syntactic proof of completeness of LBiInt2 with respect
to LBiInt1. Instead, completeness of LBiInt2 is shown by an encoding
of the calculus GBiInt [5], which is known to be sound and complete
for bi-intuitionistic logic. The translation is natural and shows an
interesting duality between GBiInt and LBiInt2. It also gives a first
simple proof theoretic account of the proof search strategy associated
with GBiInt (which is largely semantically motivated).

Our methodology is to use structures (called nested sequents) which are
similar to the structures in display calculi but which are more restricted
than those used in display calculi. In particular, not all the display struc-
tural connectives used in Goré’s calculus [12] are allowed and certain display
postulates are missing. The idea is to get as close as possible to sequent
calculus, because then we may be able to use the standard saturation tech-
niques for proof search common in sequent calculus. Since our calculi are
not display calculi, Belnap’s general cut elimination theorem [2] cannot be
used directly to prove cut elimination for our calculi. One way of showing
cut elimination for LBiInt1 would be an indirect proof via a detour through
display calculus. That is, one first designs a corresponding display sys-
tem for LBiInt1 for which Belnap’s cut elimination theorem can be used,
e.g., by modifying Goré’s calculus to work with a more restricted form of
structures, and then showing that the cut free proofs of this display system
can be mapped to cut-free proofs of LBiInt1. We show here a simple and
direct cut elimination proof, without detour through display calculus and
Belnap’s theorem, by using a certain proof substitution technique, which is
very similar to Belnap’s original cut elimination proof. We believe that this
cut elimination proof can be extended to other logics which contain pairs
of adjoint connectives like classical modal (tense) logics such as KtS4 and
its cousins. If so, then there is a possibility of obtaining general characteri-
sations of cut admissibility like those of Belnap’s for these logics.

Outline of the paper Sections 2-4 present the calculus LBiInt1 and its
meta theory via theorems on cut elimination, soundness and completeness.
While the structural rules in LBiInt1 are somewhat more restrictive than
display calculi, and hence reduce slightly the non-determinism arising from
the structural rules of display calculi, they still pose some difficulty in proof
search. In Section 5, we present a restricted version of LBiInt1, called
LBiInt2, in which all the structural rules are omitted and are instead ab-
sorbed into introduction rules. We give a terminating proof search strategy
for LBiInt2. The idea behind backward proof search for LBiInt2 is that the
introduction rules for implication and subtraction can be used to ‘suspend’
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Identity and cut:

X,A ⊢ A, Y id
X1 ⊢ Y1, A A,X2 ⊢ Y2

X1,X2 ⊢ Y1, Y2
cut

Structural rules:

X ⊢ Y
X,A ⊢ Y wL

X ⊢ Y
X ⊢ A, Y wR

X,A,A ⊢ Y
X,A ⊢ Y cL

X ⊢ A,A, Y
X ⊢ A, Y cR

(X1 < Y1),X2 ⊢ Y2

X1,X2 ⊢ Y1, Y2

sL
X1 ⊢ Y1, (X2 > Y2)
X1,X2 ⊢ Y1, Y2

sR

X2 ⊢ Y2, Y1

X1, (X2 < Y2) ⊢ Y1
<

X1,X2 ⊢ Y2

X1 ⊢ Y1, (X2 > Y2)
>

Logical rules:

X,Bi ⊢ Y
X,B1 ∧B2 ⊢ Y ∧L i ∈ {1, 2}

X ⊢ A, Y X ⊢ B, Y
X ⊢ A ∧B, Y ∧R

X,A ⊢ Y X,B ⊢ Y
X,A ∨B ⊢ Y ∨L X ⊢ Bi, Y

X ⊢ B1 ∨B2, Y
∨R i ∈ {1, 2}

X ⊢ A, Y X,B ⊢ Y
X,A→ B ⊢ Y →L

X,A ⊢ B
X ⊢ Y,A→ B

→R

A ⊢ B, Y
X,A−<B ⊢ Y −<L

X ⊢ A, Y X,B ⊢ Y
X ⊢ A−<B, Y −<R

Figure 1. LBiInt1: a sequent calculus for bi-intuitionistic logic

proof search of a (top-level) sequent and to ‘restart’ it at a later stage. Such
restart rules are already known in the literature, but as far as we are aware,
our work is the first time they have been given a purely proof-theoretic set-
ting. In the same section we also show that we can encode the sound and
complete calculus GBiInt [5] into LBiInt2, thereby giving an indirect proof
of the completeness of LBiInt2. Section 6 discusses related and future work.
An extended version of the paper with more details will be made available
on the web.

2 System LBiInt1

Formulas of bi-intuitionistic logic are given by the following grammar:

A := p | A→ A | A−<A | A ∧A | A ∨A.
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Negative and positive structures 1 are expressions generated, respectively,
from the following grammars:

N := ∅ | A | (N,N) | N < P P := ∅ | A | (P, P ) | N > P.

The structural (comma) connective “,” is associative and commutative and
∅ is its unit. We always consider structures modulo these equivalences.

A sequent is an expression of the form X ⊢ Y , where X is a negative
structure and Y is a positive structure. To reduce parentheses, we assume
that the structural connective “,” binds tighter than > and <. Thus, we
write X,Y > Z to mean (X,Y ) > Z.

A context is a structure with a hole, denoted with Z[]. We write Z[X]
to denote a structure resulting from filling the hole in the context Z[] with
the structure X. Note that such a replacement does not always give a legal
structure. For example, if Z[] is [] < p and X is q > r, then Z[X] = (q >
r) < p is not a structure since we have a positive structure to the left of
< . A k-hole context is a context with k holes. Given a k-hole context
Z[· · · ] we write Z[Xk] to stand for the structure obtained from Z[· · · ] by
replacing each hole with an occurrence of the structure X. An anti-positive
context is a context Z[] such that Z[X] is a negative structure for every
positive structure X. An iso-positive context is a context Z[] such that
Z[X] is a positive structure for every positive structure X. Likewise, an
anti-negative context is a context Z[] such that Z[X] is a positive structure
for every negative structure X, and Z[] is an iso-negative context if Z[X] is a
negative structure for every negative structure X. These definitions extend
straightforwardly to multiple-hole contexts.

The structural connective comma “,” is a proxy for conjunction (on the
left) and disjunction (on the right), while < is a proxy for exclusion and >
is a proxy for implication as we shall show later. Note that, unlike display
calculi, < appears only on the left of turnstile at the top level while >
appears only on the right at the top level, thus there is no overloading of
these structural connectives.

Our first sequent system LBiInt1 for bi-intuitionistic logic is given in Fig-
ure 1. The introduction rules for the logical connectives are the standard
ones. The logical rules are non-invertible, since they lose structures or for-
mulas going upwards. Since we have contraction and weakening, on both
sides of the sequent, it is possible to formulate invertible logical rules by im-
plicit contraction, as we shall see later. LBiInt1 is very similar to the display
calculus for bi-intuitionistic logic of Goré [11], but with some differences:

• Sequents are of a more restricted form than in display calculus. For
example, we do not allow sequents of the form X ⊢ A < B.

1Only recently, we have realised that this may not be the simplest class of structures
needed for our calculus. That is, the structural connective <may not be needed, as we can
overload the connective >, by interpreting it differently in positive and negative contexts,
just as the structural connective ‘,’ can be overloaded to represent both disjunction and
conjunction in different contexts. The current notation was chosen to conform with
Goré’s display system, where < is used as a structural proxy for −<.
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• The contraction and the weakening rules are applicable to formulae
only, not structures in general like in display calculi. But we shall
see that the general contraction and weakening are derivable from the
“atomic” ones in LBiInt1, which is not the case for Goré’s system.

• The structural rules sL and sR are more general than the display
postulates in display logic. These rules are derivable in Goré’s system,
but one needs to use contraction and weakening on structures.

As a consequence of these differences, cut elimination for LBiInt1 does not
necessarily follow from cut elimination for its display calculus counterpart.
However, it may be possible to modify Goré’s system in such a way that
there is a mapping between the cut free proofs of both LBiInt1 and the
modified system. We leave the details of such a connection to future work.

The following two propositions state the admissibility of the general con-
traction and weakening rules. These can be proved by using the structural
rules sL, sR, > and < .

PROPOSITION 1. Admissibility of general contraction. The two con-
traction rules shown below are cut-free admissible in LBiInt1:

X,Y, Y ⊢ Z
X, Y ⊢ Z gcL

X ⊢ Y, Y, Z
X ⊢ Y,Z gcR

Proof. We prove this simultaneously by induction on the size of Y . We
show a derivation of the gcL rule; the case for gcR is symmetric. The non-
trivial case is when Y = Y1 < Y2. We show that in this case, the contraction
rule can be reduced to contractions on smaller structures, which therefore
are admissible by the induction hypothesis:

X, (Y1 < Y2), (Y1 < Y2) ⊢ Z
(Y1 < Y2), (Y1 < Y2) ⊢ X > Z

>

(Y1 < Y2), Y1 ⊢ Y2, (X > Z)
sL

Y1, Y1 ⊢ Y2, Y2, (X > Z)
sL

Y1, Y1 ⊢ Y2, (X > Z)
gcR

Y1 ⊢ Y2, (X > Z)
gcL

Y1 < Y2 ⊢ X > Z
<

X, (Y1 < Y2) ⊢ Z
sR

�

PROPOSITION 2. Admissibility of general weakening.
The two weakening rules below are cut-free admissible in LBiInt1:

X ⊢ Z
X, Y ⊢ Z gwL

X ⊢ Z
X ⊢ Y,Z gwR
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PROPOSITION 3. The id rule can be restricted to the atomic form:

p ⊢ p id

So from now on, we assume that all id rules are of the atomic form.

3 Cut elimination

Although the proof system LBiInt1 shares some similarity with traditional
Gentzen’s systems, cut elimination for LBiInt1 as presented here follows a
different technique from the standard cut elimination technique for sequent
calculus. In particular, when the cut formula is not principal in either one
of the premises of the cut rule, no cut reductions are required in our cut
elimination proof. Instead, the structural rules sL and sR allow us to carry
the context of one premise of the cut to its other premise resulting in a “proof
substitution” akin to the normalisation proofs in natural deduction. Apart
from Belnap’s cut-elimination proof for display logic, the closest technique
we know of is the cut elimination proof for classical logic in a proof system
using deep inference [3].

For example, suppose π1 is the cut-free derivation below where the oc-
currence of p in the root sequent participates in n instances of id in the
leaves of π1:

p ⊢ p id · · · p ⊢ p id
....

X1 ⊢ Y1, p

Let ξ be the derivation below which ends in an instance of cut on p:

π1

X1 ⊢ Y1, p
π2

p,X2 ⊢ Y2

X1,X2 ⊢ Y1, Y2
cut

Then a cut free derivation for X1,X2 ⊢ Y1, Y2 can be obtained by replacing
the parametric ancestors of the cut formula p in π1 with the structure (X2 >
Y2) and replacing the leaves of π1, where the cut formula p is used, with the
derivation π2. This cut-free derivation is schematically presented as follows:

π2

p,X2 ⊢ Y2

p ⊢ (X2 > Y2)
> · · ·

π2

p,X2 ⊢ Y2

p ⊢ (X2 > Y2)
>

....
X1 ⊢ Y1, (X2 > Y2)
X1,X2 ⊢ Y1, Y2

sR

The reductions for the cases where the cut formula is non-atomic follow
essentially the same idea. That is, we substitute the cut formula on one
premise of the cut rule with the context of the other premise, and expand
this context when the cut formula is used. The only difference is that in the
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case of non-atomic cut formula, we need to produce extra cuts to make this
substitution work. But all the cuts produced are of smaller size, therefore
the whole process terminates.

In the following, we write |A| for the size of the formula A: the number
of logical operators appearing in A. In an instance of a cut rule

X1 ⊢ Y1, A A,X2 ⊢ Y2

X1,X2 ⊢ Y1, Y2
cut

the formula A is called the cut formula of the cut instance. The cut-rank
of the cut instance is |A|. Given a derivation π, we denote with mc(π) the
maximum of the cut-ranks in π. If there are no cuts in π then mc(π) = 0.

Lemma 4 states the proof substitutions needed to eliminate atomic cuts.

LEMMA 4. Suppose p,X ⊢ Y is cut-free derivable for some fixed p, X
and Y . Then for any k-hole anti-positive context Z1[· · · ] and any l-hole
iso-positive context Z2[· · · ], if Z1[pk] ⊢ Z2[pl] is cut-free derivable, then
Z1[(X > Y )k] ⊢ Z2[(X > Y )l] is cut-free derivable.

Proof. Let π be a cut-free derivation of p,X ⊢ Y and let ξ be a cut-
free derivation of Z1[pk] ⊢ Z2[pl]. We construct a cut-free derivation ξ′ of
Z1[(X > Y )k] ⊢ Z2[(X > Y )l] by induction on the height of ξ. Most cases
follow straightforwardly from the induction hypothesis. The only non-trivial
case is when p is active in the derivation, i.e., when ξ ends with an id rule
or a contraction rule applied to an occurence of p to be substituted for:

• Suppose ξ is

Z ′1[p
k], p ⊢ p, Z ′2[pl−1]

id

Note that the p immediately to the left of the turnstile cannot be part
of the pk by the restrictions on the context Z1[· · · ]. The derivation ξ′

is then constructed as follows, where we use double lines to abbreviate
derivations:

π
p,X ⊢ Y

p ⊢ (X > Y )
>

Z ′1[(X > Y )k], p ⊢ (X > Y ), Z ′2[(X > Y )l−1]
gwR; gwL

• Suppose ξ is
ξ1

Z1[pk] ⊢ p, p, Z ′2[pl−1]

Z1[pk] ⊢ p, Z ′2[pl−1]
cR

By induction hypothesis, we have a cut-free derivation ξ′1 of

Z1[(X > Y )k] ⊢ (X > Y ), (X > Y ), Z ′2[(X > Y )l−1].
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The derivation ξ′ is then constructed as follows:

ξ′1
Z1[(X > Y )k] ⊢ (X > Y ), (X > Y ), Z ′2[(X > Y )l−1]

Z1[(X > Y )k] ⊢ (X > Y ), Z ′2[(X > Y )l−1]
gcR

Note that gwR and gcR and gwL are cut-free derivable in LBiInt1 by Propo-
sition 1 and Proposition 2. �

Lemmas 5-9 state the proof substitutions needed for non-atomic cuts.

LEMMA 5. Let ξ be a derivation of

Z1[(A1 ∨A2)k] ⊢ Z2[(A1 ∨A2)l]

for some k-hole iso-negative context Z1[· · · ] and l-hole anti-negative context
Z2[· · · ], such that mc(ξ) < |A1∨A2|. Let πi be a derivation of X ⊢ Y,Ai, for
some i ∈ {1, 2}, such that mc(πi) < |A1 ∨ A2|. Then there is a derivation
ξ′ with mc(ξ′) < |A1 ∨A2| of

Z1[(X < Y )k] ⊢ Z2[(X < Y )l].

Proof. By induction on the height of ξ. In the following, we let A = A1∨A2.
Most cases follow straightforwardly from the induction hypothesis. The only
interesting case is when a left-rule is applied to an occurence of A1∨A2 which
is to be replaced by X < Y. That is, ξ is

ξ1
Z ′1[A

k−1], A1 ⊢ Z2[Al]
ξ2

Z ′1[A
k−1], A2 ⊢ Z2[Al]

Z ′1[A
k−1], A1 ∨A2 ⊢ Z2[Al]

∨L

By induction hypothesis, we have a derivation ξ′i, for each i ∈ {1, 2}, of

Z ′1[(X < Y )k−1], Ai ⊢ Z2[(X < Y )l]

with mc(ξ′i) < |A1 ∨A2|. The derivation ξ′ is then constructed as follows:

πi
X ⊢ Y,Ai
X < Y ⊢ Ai <

ξ′i
Z ′1[(X < Y )k−1], Ai ⊢ Z2[(X < Y )l]

Z ′1[(X < Y )k−1], (X < Y ) ⊢ Z2[(X < Y )l]
cut

�

LEMMA 6. Let ξ be a derivation of

Z1[(A1 ∧A2)k] ⊢ Z2[(A1 ∧A2)l]

for some k-hole iso-negative context Z1[· · · ] and l-hole anti-negative context
Z2[· · · ] with mc(ξ) < |A1 ∧ A2|. Let π1 be a derivation of X ⊢ Y,A1 and
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let π2 be a derivation of X ⊢ Y,A2 with mc(π1) < |A1 ∧A2| and mc(π2) <
|A1 ∧A2|. Then there is a derivation ξ′ with mc(ξ′) < |A1 ∧A2| of

Z1[(X < Y )k] ⊢ Z2[(X < Y )l].

Proof. Analogous to the proof of Lemma 5. �

LEMMA 7. Let ξ be a derivation of

Z1[(A→ B)k] ⊢ Z2[(A→ B)l]

for some k-hole iso-negative context Z1[· · · ] and l-hole anti-negative context
Z2[· · · ] with mc(ξ) < |A → B|. Let π be a derivation of X,A ⊢ B with
mc(π) < |A→ B|. Then there is a derivation ξ′ with mc(ξ′) < |A→ B| of

Z1[Xk] ⊢ Z2[X l].

Proof. By induction on the height of ξ. As in the previous lemmas, the
non-trivial case is when ξ ends with →L on A→ B:

ξ1
Z ′1[(A→ B)k−1] ⊢ A,Z2[(A→ B)l]

ξ2
Z ′1[(A→ B)k−1], B ⊢ Z2[(A→ B)l]

Z ′1[(A→ B)k−1], A→ B ⊢ Z2[(A→ B)l]
→L

By induction hypothesis, we have derivations ξ′1 and ξ′2 respectively of the
sequents below where mc(ξ′1) < |A→ B| and mc(ξ′2) < |A→ B|:

Z ′1[X
k−1] ⊢ A,Z2[X l] Z ′1[X

k−1], B ⊢ Z2[X l]

In the following, we let V1 denote Z ′1[X
k−1] and V2 denote Z2[X l]. The

derivation ξ′ is constructed as follows:

ξ′1
V1 ⊢ A, V2

π
X,A ⊢ B

ξ′2
V1, B ⊢ V2

V1, A,X ⊢ V2
cut

V1, V1,X ⊢ V2, V2
cut

V1,X ⊢ V2

gcL; gcR

�

LEMMA 8. Let ξ be a derivation of

Z1[(A−<B)k] ⊢ Z2[(A−<B)l]

for some k-hole iso-negative context Z1[· · · ] and l-hole anti-negative context
Z2[· · · ] with mc(ξ) < |A−<B|. Let π1 be a derivation of X ⊢ Y,A and let π2

be a derivation of X,B ⊢ Y with mc(π1) < |A−<B| and mc(π2) < |A−<B|.
Then there is a derivation ξ′ with mc(ξ′) < |A−<B| of

Z1[(X < Y )k] ⊢ Z2[(X < Y )l].
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Proof. The non-trivial case is when ξ ends with −<L on A−<B :

ξ1
A ⊢ B,Z2[(A−<B)l]

Z ′1[(A−<B)k−1], A−<B ⊢ Z2[(A−<B)l]
−<L

By induction hypothesis, we have a derivation ξ′1 of

A ⊢ B,Z2[(X < Y )l]

with mc(ξ′1) < |A−<B|. Let V denote the structure Z2[(X < Y )l]. Then ξ′

is constructed as follows:

π1

X ⊢ Y,A

ξ′1
A ⊢ B, V

π2

X,B ⊢ Y
A,X ⊢ Y, V cut

X,X ⊢ Y, Y, V cut

X ⊢ Y, V gcL; gcR

X < Y ⊢ V <

Z ′1[(X < Y )k−1],X < Y ⊢ V
gwL

�

LEMMA 9. Let ξ be a derivation of Z1[Ak] ⊢ Z2[Al] where A is a non-
atomic formula, Z1[· · · ] is a k-hole anti-positive context, Z2[· · · ] is an l-
hole iso-positive context, and mc(ξ) < |A|. Let π be a derivation of A,X ⊢
Y with mc(π) < |A|. Then there is a derivation ξ′ with mc(ξ′) < |A| of
Z1[(X > Y )k] ⊢ Z2[(X > Y )l].

Proof. By induction on the height of ξ and case analysis on A. The non-
trivial case is when ξ ends with a right-introduction rule on A. That is,
in this case, we have Z2[Al] = (Z ′2[A

l−1], A) for some iso-positive context
Z ′2[· · · ]. We distinguish several cases depending on A. We show here the
cases where A is either a disjunction C ∨D, or an implication C → D.

• Suppose A = C ∨D and ξ is the following derivation:

ξ1
Z1[(C ∨D)k] ⊢ Z ′2[(C ∨D)l−1], C

Z1[(C ∨D)k] ⊢ Z ′2[(C ∨D)l−1], C ∨D ∨R

By induction hypothesis, we have a derivation ξ′1 of

Z1[(X > Y )k] ⊢ Z ′2[(X > Y )l−1], C

such that mc(ξ′1) < |C ∨ D|. Let W1 = Z1[(X < Y )k] and let W2 =
Z2[(X > Y )l−1]. Applying Lemma 5 to π and ξ′1, we obtain a deriva-
tion θ of

(W1 < W2),X ⊢ Y
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such that mc(θ) < |C ∨D|. The derivation ξ′ is then constructed as
follows:

ξ′1
(W1 < W2),X ⊢ Y
W1 < W2 ⊢ X > Y

>

W1 ⊢W2, (X > Y )
sL

Clearly, mc(ξ′) < |C ∨D|.
• Suppose A = C → D and ξ is

ξ1
Z1[(C → D)k], C ⊢ D

Z1[(C → D)k] ⊢ Z ′2[(C → D)l−1], C → D
→R

By induction hypothesis, we have a derivation ξ′1 of

Z1[(X > Y )k], C ⊢ D

Then the derivation ξ′ is constructed as follows:

θ
Z1[(X > Y )k],X ⊢ Y

Z1[(X > Y )k] ⊢ Z2[(X > Y )l−1], (X > Y )
sL

where θ is obtained by applying Lemma 7 to π and ξ′1.

The other cases are treated analogously, using Lemmas 6 and Lemma 8. �

Finally, cut elimination is proved by simple proof substitutions, the con-
struction of which is given by the preceding lemmas.

THEOREM 10. If X ⊢ Y is LBiInt1-derivable then it is also cut-free deriv-
able.

Proof. As typical in cut elimination proofs, we remove topmost cuts in
succession. Let π be a derivation of LBiInt1 with a topmost cut instance

π1

X1 ⊢ Y1, A
π2

X2, A ⊢ Y2

X1,X2 ⊢ Y1, Y2
cut

Note that π1 and π2 are both cut-free since this is a topmost instance in π.
We use induction on the size of A to eliminate this topmost instance of cut.

If A is an atomic formula p then the cut free derivation is constructed as
follows where ξ is obtained from applying Lemma 4 to π1 and π2:

ξ
X1 ⊢ Y1, (X2 > Y2)
X1,X2 ⊢ Y1, Y2

sR
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If A is non-atomic, using Lemma 9 we get the following derivation θ:

ξ
X1 ⊢ Y1, (X2 > Y2)
X1,X2 ⊢ Y1, Y2

sR

We have mc(θ) < |A| by Lemma 9, therefore by induction hypothesis, we
can remove all the cuts in θ to get a cut-free derivation of X1,X2 ⊢ Y1, Y2.

�

4 Soundness and completeness of LBiInt1

To prove soundness, we first define an interpretation of sequents as formulae
as shown below using two extra logical constants ⊤ and ⊥ which were not
part of our original language for formulae. But it is easy to show that the
system LBiInt1 can be extended to cover these constants in the obvious way.

DEFINITION 11. The two mutual-recursively functions τN and τP respec-
tively translate a negative and positive structure into a BiInt-formula:

τN (∅) = ⊤ τP (∅) = ⊥
τN (A) = A τP (A) = A
τN (X,Y ) = τN (X) ∧ τN (Y ) τP (X,Y ) = τP (X) ∨ τP (Y )
τN (X < Y ) = τN (X)−<τP (Y ) τP (X > Y ) = τN (X)→ τP (Y )

We assume the reader is familiar with the Kripke semantics [22, 12] for
BiInt using a binary reflexive and transitive relation ≤, which extends the
usual Kripke semantics for Int with an extra clause for exclusion given below:

w 
 A−<B iff ∃v ≤ w.v 
 A and v 6
 B.

THEOREM 12. Soundness. Every LBiInt1-derivable BiInt formula is
valid.

Proof. We show that for every rule ρ of LBiInt1

X1 ⊢ Y1 · · · Xn ⊢ Yn
X ⊢ Y ρ

the following holds: if for every i ∈ {1, . . . , n}, the formula τN (Xi)→ τP (Yi)
is valid then the formula τN (X) → τP (Y ) is valid. Since the formula-
translation (τN (X) ∧ A)→ (A ∨ τP (Y )) of the id rule is obviously valid, it
then follows that every formula derivable in LBiInt1 is also valid.

For all the rules of LBiInt1, except < and −<L, we can show the stronger
statement that the following formula is valid:

[(τN (X1)→ τP (Y1)) ∧ · · · ∧ (τN (Xn)→ τP (Yn))]→ (τN (X)→ τP (Y )).

Soundness of < and −<L are shown in the standard way, by reasoning about
the forcing relation 
 and the reflexive and transitive relation ≤. �
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{X} = {A | X = (A, Y ) for some A and Y }

X,A ⊢ A, Y id
{X1},X2 ⊢ Y2

X1 ⊢ Y1, (X2 > Y2)
> {X1} 6⊆ {X2}

X2 ⊢ Y2, {Y1}
X1, (X2 < Y2) ⊢ Y1

< {Y1} 6⊆ {Y2}

X,B1 ∧B2, Bi ⊢ Y
X,B1 ∧B2 ⊢ Y ∧L X ⊢ A ∧B,A, Y X ⊢ A ∧B,B, Y

X ⊢ A ∧B, Y ∧R
X,A ∨B,A ⊢ Y X,A ∨B,B ⊢ Y

X,A ∨B ⊢ Y ∨L X ⊢ B1 ∨B2, Bi, Y

X ⊢ B1 ∨B2, Y
∨R

X,A→ B ⊢ A, Y X,A→ B,B ⊢ Y
X,A→ B ⊢ Y →L

X ⊢ Y,A→ B,B

X ⊢ Y,A→ B
→R1

X,A−<B,A ⊢ Y
X,A−<B ⊢ Y −<L1

X ⊢ A,A−<B, Y X,B ⊢ A−<B, Y
X ⊢ A−<B, Y −<R

A ⊢ B, {Y }, (X,A−<B > Y )
X,A−<B ⊢ Y −<L2

(X < Y,A→ B), {X}, A ⊢ B
X ⊢ Y,A→ B

→R2

Figure 2. System LBiInt2

Completeness is shown by embedding Rauszer’s sequent calculus G1 [21]
for BiInt into LBiInt1. The calculus G1 contains the cut rule, and is shown
to be complete by Rauszer [21]. The encoding of G1 into LBiInt1 is obvious
since all the rules of G1 are easily derivable from the rules of LBiInt1.

THEOREM 13. Completeness. Every BiInt-valid formula is LBiInt1-
derivable.

5 Proof search

System LBiInt1 is not suitable for proof search, since the structural rules
sL, sR, < and > can easily lead to non-termination if applied naively. In
addition, we also have the usual problems with the contraction rules since
they can be applied ad infinitum. We now present a refined version of
LBiInt1, called LBiInt2, in which all the structural rules, except for > and
<, are absorbed into logical rules. The resulting calculus, for the intuition-
istic fragment, resembles contraction-free calculi for the traditional Gentzen
systems for intuitionistic logic, e.g., the system G3i in [26]. The underlying
idea behind LBiInt2 is that the right-introduction rule for → and the left
introduction rule for −< act as an instruction to store the current state
(of proof search), and the rules > and < act as an instruction to restart
previously stored computation states.

The inference rules for LBiInt2 are given in Figure 2 using the notation
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{X} to denote the set of formulae that appear at the top-level of X:

{X} = {A | X = (A, Y ) for some A and Y }.
Intuitively, the set {X} denotes X with all the substructures of the form
Y > Z or Y < Z removed. For example, if X is (A,B, (C > D)), then {X}
is the set {A,B}. The right introduction rule for → splits into two rules:
→R1 and→R2. The→R1 rule is strictly speaking not necessary as it can be
derived using→R2 and <. However, it is useful in our proof search strategy
which relies on a saturation process on sequents, as we shall see later. The
rule →R2 incorporates some features of the structural rule sL. The left
introduction rule for −< splits also into two rules with roles symmetric to
those for → .

5.1 A terminating proof search strategy
We classify the rules of LBiInt2 into three groups:

Static Rules: = {id,∧L,∧R,∨L, ∨R,→L, −<R,−<L1,→R1};
Jump Rules: = {−<L2,→R2}; and

Return Rules: = {<, >}.
We call a sequence of static rule applications a saturation.

DEFINITION 14. A sequent X ⊢ Y is saturated iff it satisfies 1-8, and is
strongly saturated iff it additionally satisfies 9:

1. {X} ∩ {Y } = ∅
2. If A ∧B ∈ {X} then A ∈ {X} and B ∈ {X}
3. If A ∧B ∈ {Y } then A ∈ {Y } or B ∈ {Y }
4. If A ∨B ∈ {X} then A ∈ {X} or B ∈ {X}
5. If A ∨B ∈ {Y } then A ∈ {Y } and B ∈ {Y }
6. If A→ B ∈ {X} then A ∈ {Y } or B ∈ {X}
7. If A−<B ∈ {Y } then A ∈ {Y } or B ∈ {X}
8. If A→ B ∈ {Y } then B ∈ {Y } If A−<B ∈ {X} then A ∈ {X}
9. If A→ B ∈ {Y } then A ∈ {X} If A−<B ∈ {X} then B ∈ {Y }.

We say that an LBiInt2 rule ρ is applicable to a sequent γ0 = X0 ⊢ Y0

if for every premise Xi ⊢ Yi of ρ, {Xi} * {X0} or {Yi} * {Y0}. Thus only
jump and return rules are applicable to saturated sequents.

DEFINITION 15 (Proof search strategy).
Function Prove
Input: sequent γ0

Output: true (i.e. γ0 is derivable) or false (i.e. γ0 is not derivable)
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1. If id is applicable to γ0 then return true

2. Else if a static rule ρ is applicable to γ0 then

(a) Let γ1, · · · , γn be the premises of ρ obtained from γ0

(b) Return
∧n
i=1 Prove(γi)

3. Else if Prove(γ1) = true for some premise instance γ1 obtained from
γ0 by applying ρ ∈ {−<L2,→R2, <,>} backward then return true

4. Else return false.

We shall show that the search strategy given in Definition 15 terminates,
if given an input sequent with a certain simple structure, which is defined
in the following.

DEFINITION 16. A structure is a flat structure if it contains no occurrences
of the structural connectives > and < . We use Γ and ∆ to stand for flat
structures since flat structures can be viewed as sets of formulae. The set
of (positive/negative) linear structures is the smallest set of structures that
satisfies the following:

1. Every flat structure is a linear structure.

2. If X is a positive linear structure and Γ is a flat structure, then Γ < X
is a negative linear structure.

3. If X is a negative linear structure and ∆ is a flat structure, then
X > ∆ is a positive linear structure.

4. If X is a positive (negative) linear structure and ∆ is a flat structure,
then (X,∆) is a positive (resp. negative) linear structure.

A sequent X ⊢ Y is a linear sequent if either X is a flat structure and Y
is a positive linear structure, or X is a negative linear structure and Y is a
flat structure.

The intuition of Definition 16 is that a linear sequent X ⊢ Y can take
the form (X ′ < Y ′),Γ ⊢ ∆, or Γ ⊢ ∆, (X ′′ > Y ′′), or Γ ⊢ ∆, where X ′ < Y ′

and X ′′ > Y ′′ store the sequent corresponding to the previous state of
computation, and Γ and ∆ are sets of formulae.

LEMMA 17. Let X ⊢ Y be a linear sequent. Then for every LBiInt2-
derivation π of X ⊢ Y , every sequent in π is a linear sequent.

Proof. Given a derivation π of a linear sequent X ⊢ Y , we show by
induction on the length of π that every sequent in π is a linear sequent.
This is straightforward by showing that in every rule of LBiInt2, if the
conclusion of the rule is a linear sequent, then every premise of the rule
is also a linear sequent, which can be verified by inspection of the rules of
LBiInt2. �
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Note that as a consequence of Lemma 17, every sequent that arises during
proof search for a linear sequent X ⊢ Y , using the search procedure given
in Definition 15, is a linear sequent.

We now define a translation from linear sequents to linked lists, consisting
of nodes that are pairs of sets of formulae, linked by labels marked either R
or R−1.

DEFINITION 18.

list(Γ ⊢ ∆) = 〈Γ,∆〉
list((X ′ < Y ′),Γ ⊢ ∆) = list(X ′ ⊢ Y ′) R 〈Γ,∆〉
list(Γ ⊢ ∆, (X ′′ > Y ′′)) = list(X ′′ ⊢ Y ′′) R−1 〈Γ,∆〉

We write length(L) to mean the number of nodes in the list L.

COROLLARY 19. A backward LBiInt2 rule application to a linear sequent
X ⊢ Y can be viewed as an operation on list(X ⊢ Y ), where the conclusion
(resp. premise) is the list before (resp. after) the operation. The jump rules
append a node to the list, and the static rules saturate the end node. The
return rules remove a node from the end of the list, and add subformulae to
the penultimate node.

For example, below left is is an instance of →R2 with the corresponding
list structures of the premise and conclusion on the right:

(C < B,A→ B), C,A ⊢ B
C ⊢ B,A→ B

→R2
〈{C}, {B,A→ B}〉 R 〈{C,A}, {B}〉

〈{C}, {B,A→ B}〉
We now define a metric that we will use in the main termination proof.

DEFINITION 20. The degree of a formula is:

deg(p) = 0
deg(A ∧B) = deg(A ∨B) = max(deg(A), deg(B))

deg(A→ B) = deg(A−<B) = 1 +max(deg(A), deg(B)).

The degree of a sequent is:

degL(X ⊢ Y ) = max{deg(A) | A ∈ {X}}
degR(X ⊢ Y ) = max{deg(B) | B ∈ {Y }}
deg(X ⊢ Y ) = max(degL(X ⊢ Y ), degR(X ⊢ Y )).

Note that only logical connectives contribute to these metrics.

We denote with sf(A) the set of subformulae of A, and

sf(Γ) =
⋃
A∈Γ

sf(A)

the set of subformulae of Γ. In the following, we assume that the initial
input to the search procedure Prove is a linear sequent Γ0 ⊢ ∆0, and we
define m = |sf(Γ0 ∪∆0)|.
LEMMA 21. Let X ⊢ Y be any sequent encountered during proof search.
Using jump rules, list(X ⊢ Y ) can be extended at most O(m2) times.
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Proof. We show that the number of jump rule applications is bounded by
O(m2).

First, we show that there can be at most m consecutive jumps in the
same direction. In the forward case, consider a backwards application of
→R2 with principal formula A → B. After this application, A will be
added to the LHS of the sequent, and remain on the LHS during saturation
and forward jumps. Should A→ B reappear on the RHS, B will be added
to the RHS by the →R1 rule during saturation, so a repeated application
of →R2 to A→ B will be blocked by the general blocking condition. Thus
since the number of →-formulae is bounded by m and we can only jump on
each →-formula once, there can be at most m consecutive forward jumps.
The backward case is symmetric.

We now show that we can switch direction at most m times. Consider
a direction switch, e.g., a forward jump using →R2 followed by a backward
jump −<L2 (the other case is symmetric), and any static rule applications
in between. Let γ0 and γ1 be the conclusion and premise of the →R2 rule
respectively, and let γ2 and γ3 be the conclusion and premise of the −<R2

rule respectively, as shown below:

...
γ3 = C ⊢ D,∆, ((X < Y,A→ B),Γ, C−<D > ∆)

γ2 = (X < Y,A→ B),Γ, C−<D ⊢ ∆
...

γ1 = (X < Y,A→ B), {X}, A ⊢ B

−<L2

γ0 = X ⊢ Y,A→ B
→R2

...

Let d0 = deg(γ0). We will show that deg(γ3) ≤ d0 − 1. By inspection of
the rules and Definition 20, we have the following:

degL(γ1) ≤ d0

degR(γ1) ≤ d0 − 1
degL(γ2) = degL(γ1) ≤ d0

degR(γ2) ≤ max(degL(γ1)− 1, degR(γ1)) = d0 − 1
degL(γ3) ≤ degL(γ2)− 1 = d0 − 1
degR(γ3) ≤ deg(γ2)− 1 = d0 − 1

Therefore deg(γ3) = max(degL(γ3), degR(γ3)) ≤ d0 − 1.
After a direction switch, we can again make at most m jumps in one

direction. Therefore the total number of jump rule applications is bounded
by O(m2). �

LEMMA 22. Let X ⊢ Y be any sequent encountered during proof search.
Then the saturation process for X ⊢ Y terminates after O(m) steps.

Proof. Every application of a static rule adds a subformula of sf(Γ0 ∪∆0)
to the sequent. After at most m applications of static rules, the sequent will
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contain all subformulae of the original sequent, and hence will be saturated.
�

THEOREM 23. The proof search strategy of Definition 15 terminates.

Proof. Suppose for a contradiction that the strategy does not terminate.
From Lemmas 21 and 22, we can conclude that the only way to get non-
termination is for the jump and return rules to repeatedly create and remove
nodes.

The length of the list is at least 1 because the first node cannot be
removed. We call a node that cannot be removed stable. Every time a return
rule removes node i from the list, it adds one or more new subformulae of
Γ0∪∆0 to node i−1. After at most m such updates, node i−1 will contain
every subformula, and the return rules will no longer be applicable to node
i because their side conditions will not hold. Then node i − 1 will become
stable. Eventually all nodes will become stable, and the return rules will no
longer be applicable to the end of the list. Contradiction. �

5.2 Soundness and completeness of LBiInt2

For soundness of LBiInt2 we show that every LBiInt2 rule is derivable in
LBiInt1.

THEOREM 24. Soundness of LBiInt2. If the sequent X ⊢ Y is derivable
in LBiInt2 then it is also derivable in LBiInt1.

To prove completeness of LBiInt2, we take a detour through Buisman and
Goré’s calculus GBiInt [5, 13]. That is, we show that every derivation of a
formula in GBiInt can be translated into a derivation of the same formula in
LBiInt2. Due to space limits, we give here only the outline of the translation.
The full proof is available in the extended version of the paper.

The GBiInt proof system makes use of two forms of sequents:

S Γ ⊳∆ P S Γ ⊲∆ P.

The former denotes a refutation of the sequent, whereas the latter denotes
its provability. In both sequents, Γ and ∆ are sets of formulas, and S and
P are sets of sets of formulas. S and P are called variables in [5], and they
contain a counter model for “failed” proof search, i.e., a refutation. Proof
search in GBiInt proceeds by saturation of sequents, until they become
strongly saturated, at which point we can close the search by the following
rule:

{Γ} Γ ⊳∆ {∆} Ret

This rule applies only in case where Γ ⊢ ∆ is strongly saturated. It basi-
cally says that there is no proof for this sequent, since one can construct a
counter-model for this sequent. The information about the counter-model
is then stored in the variables of the sequents, and passed back to a previous
search point. To see how this information is used, consider the following
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(simplified) right introduction rule for implication in GBiInt (which is also
called →R2):

S Γ, A ⊳ B P Γ ⊲∆, A→ B,P1 · · · Γ ⊲∆, A→ B,Pn
Γ ⊲∆, A→ B

→R2

where P = {P1, . . . , Pn} and Pi 6⊆ ∆. Here, in order to simplify presentation,
we consider an instance of the GBiInt rule →R2 where the lower sequent
contains no variables. Intuitively, proof search using this rule tries to de-
compose A→ B and see if it can find a counter model (the left premise). If
the left premise does return some counter-model, i.e., P is not empty, then
continue the search (right-premise) using the extra information gathered
from the counter-model. Naturally, the formula A → B needs no further
decomposition in subsequent proof search.

The translation from GBiInt to LBiInt2 is surprisingly natural and un-
covers a nice duality between the two calculi. To illustrate the idea behind
the translation, consider the following derivation scheme in GBiInt, where
the last rule is →R2 . Let π be a GBiInt derivation:

{S1} S1 ⊳ P1 {P1} Ret · · · {Sn} Sn ⊳ Pn {Pn} Ret....
{S1, . . . , Sn} Γ, A ⊳ B {P1, . . . , Pn}

with n-instances of Ret in its leaves. Let ξi, for each i ∈ {1, . . . , n}, be a
GBiInt derivation of Γ ⊲∆, A→ B,Pi and let ξ be the GBiInt derivation

π
S Γ, A ⊳ B P

ξ1
Γ ⊲∆, A→ B,P1 · · ·

ξn
Γ ⊲∆, A→ B,Pn

Γ ⊲∆, A→ B
→R2

where S = {S1, . . . , Sn} and P = {P1, . . . , Pn}. Then we construct an
LBiInt2 derivation of Γ ⊢ ∆, A → B as follows: We first translate each
ξi into an LBiInt2 derivation ξ′i, and then “plug” in the derivation ξi to the
i-th instance of Ret in π. This can be done by storing the context Γ < ∆
in the left-hand side of the sequents appearing in π, and restoring them at
the leaves which are instances of Ret. The following schematic derivation
shows this process of storing and restoring of context:

ξ′1
Γ ⊢ ∆, A→ B,P1

(Γ < ∆, A→ B), S1 ⊢ P1
< · · ·

ξ′n
Γ ⊢ ∆, A→ B,Pn

(Γ < ∆, A→ B), Sn ⊢ Pn <

....
(Γ < ∆, A→ B),Γ, A ⊢ B

Γ ⊢ ∆, A→ B
→R2

Notice that while proof search in GBiInt involves backtracking and pass-
ing back information from failed attempts, in LBiInt2 we simply go forward
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and restart a stored computation state when proof search in the current
state (i.e., top level sequent) can no longer progress.

THEOREM 25. If A is derivable in GBiInt then A is also derivable in
LBiInt2.

COROLLARY 26. LBiInt2 is sound and complete with respect to BiInt.

Since procedure Prove from Defn 15 mimics this translation, we have:

THEOREM 27. Any formula A is LBiInt2-derivable if and only if Prove(∅ ⊢
A) returns true.

Thus LBiInt2 gives us a decision procedure for BiInt. The fact that BiInt
is decidable is already known:

THEOREM 28. The decision problem for BiInt is pspace-complete.

Proof. We first show that BiInt is in pspace. To do this, we can easily ex-
tend the polynomial Gödel translation of intuitionistic logic into the modal
logic S4 [10], to a translation of BiInt into the tense modal logic KtS4. Since
KtS4 is in pspace [24], we know that BiInt is also in pspace.

We now show that BiInt is pspace-hard. To do this, we use the fact
that BiInt is an extension of Int, which is pspace-complete [25], and hence
pspace-hard. Therefore BiInt is pspace-complete. �

6 Related and future work

We know of only two other sequent calculi for BiInt, one due to Pinto and
Uustalu [28], and the other due to Crolard [7]. But the labelled calculus of
Pinto and Uustalu is still not available in full detail, and Crolard’s calculus
fails cut-elimination for the same reasons as does Rauszer’s original calcu-
lus [21]. The display calculus for BiInt due to Goré [12] and its more recent
extension due to Wansing [30] both have a purely syntactic cut-elimination
proof of course. But as stated in our introduction, neither of these is really
suitable for proof-search.

Hypersequents have been used for many modal [1], intutionistic and in-
termediate logics [19, 6]. Similarly, Dosen’s “higher level” sequents [8] can
cater for many different logics in one (cut-free) setting: for example, both
intuitinistic logic, classical logic and modal logics S4 and S5. But we know
of no actual work which uses either framework for intuitionistic logics with
a “converse” modality like BiInt.

The closest calculus to ours appears to be the sequent calculus for the
Lambek-Grishin logic LG of Moortgat [20], for which he proves a purely
syntactic cut-elimination result. Briefly, the logic NL is a substructural
intuitionistic logic which has a single non-associative and non-commutative
conjunction ⊗, a single non-associative and non-commutative disjunction
⊕, and two implication connectives A → B and B ← A. The logic LG is
an extension of NL with two exclusion connectives A−<B and B >−A, and
extra “mixed associativity” principles like ((A−<B)⊗C)→ ((A⊗C)−<B)
amongst others. Moortgat uses invertible residuation rules which are similar
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to our rules sL, sR, <,> since both logics permit such “flip-flopping”. But
the lack of associativity and commutativity of ⊕ and ⊗ means there is
less non-determinism in the calculus in terms of proof-search. Indeed, the
decision procedure for LG obtained by Moortgat runs in polynomial time
while it is known that the decision problem for BiInt is pspace-complete.

The main difference between Int and BiInt is of course the exclusion
connective −<, whose Kripke semantic clause “looks backward against” the
accessibility relation ≤. Thus it makes sense to look at sequent-like calculi
for the modal companions of BiInt, namely the tense logics Kt and KtS4.

There are many sequent-like calculi for the related normal modal logics
Kt, its reflexive and transitive cousin KtS4, or even just good old classical
modal logic S5 [27, 17, 1, 14, 15, 16, 4]. In each such calculus there is a
rule (or rules) which allow us to “return” to previously seen worlds when
the rules are viewed from the perspective of counter-model construction.
These calculi can be broadly separated into two groups: those which use
two-sided sequents, and those which use a negation-normal-form to make
do with right-sided sequents. It should be possible to extend most of the
former calculi to handle BiInt, but it is unlikely that the latter can be so
extended since BiInt has no negation-normal-form theorem.

On this note, we intend to consider the following ideas for future work.
Suppose we posit two additional structural connectives ◦ and • with ◦ stand-
ing as a proxy for 〈F 〉/[F ] on the left/right, and • standing as a proxy for
〈P 〉/[P ] on the left/right. Are the following rules enough to give us a cut-free
calculus for tense logic Kt which is also amenable for backward proof-search:

Γ, A,⊢ ◦(X > Y ),∆
X, [P ]Γ, 〈P 〉A ⊢ Y, 〈P 〉∆ 〈P 〉L

Γ, ◦(X < Y ) ⊢ A,∆
X, [P ]Γ ⊢ Y, [P ]A, 〈P 〉∆ [P ]R

Γ, A,⊢ •(X > Y ),∆
X, [F ]Γ, 〈F 〉A ⊢ Y, 〈F 〉∆ 〈F 〉L

Γ, •(X < Y ) ⊢ A,∆
X, [F ]Γ ⊢ Y, [F ]A, 〈F 〉∆ [F ]R

As we have noted in the introduction, the calculus LBiInt1 (and its deriva-
tive LBiInt2) is motivated by display calculi. It can be seen as an attempt to
tame proof search in display calculi. In this preliminary work, we have been
able to derive more proof-search friendly calculi essentially by constraining
the use of the display postulates of display calculi. However, there is still a
methodological gap in our results. We have not been able to show a direct
relation between LBiInt2 and LBiInt1: that is, we still need the help of an
“external” calculus GBiInt for our completeness result for LBiInt2. It is im-
portant that this gap be closed in order to generalise these results beyond
bi-intuitionistic logic. Our ultimate goal is to obtain a systematic way to
“sequentialize” a given display calculus to one with nested sequents, and
derive a proof search strategy for the latter.
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