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7296, Marseille, France

b Department of Philosophy, University of Helsinki, Finland

Abstract

The logic of Conditional Beliefs has been introduced by Board, Baltag and Smets to
reason about knowledge and revisable beliefs in a multi-agent setting. It is shown how
the semantics of this logic, defined in terms of plausibility models, can be equivalently
formulated in terms of neighbourhood models, a multi-agent generalisation of Lewis’
spheres models. On the basis of this new semantics, a labelled sequent calculus for
the logic of Conditional Beliefs is developed. The calculus has strong proof-theoretic
properties, in particular admissibility of contraction and cut, and it provides a direct
decision procedure for the logic. Furthermore, its semantic completeness is used to
obtain a constructive proof of the finite model property of the logic.
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1 Introduction
Modal epistemic logic has been studied for a long time in formal epistemol-
ogy, computer science, and notably in artificial intelligence. In this logic, to
each agent i is associated a knowledge modality Ki, so that the formula KiA
expresses that “agent i knows A.” Through agent-indexed modal operators,
epistemic logic can be employed to reason about the mutual knowledge of a
set of agents. The logic has been further extended by other modalities to en-
code various types of combined knowledge of agents (e.g., common knowledge).
However, knowledge is not the only propositional attitude, and belief is equally
significant to reason about epistemic interaction among agents. Board [5], and
then Baltag and Smets [2], [3], [4] have proposed a logic called CDL (Condi-
tional Doxastic Logic) for modelling both belief and knowledge in a multi-agent
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setting. The essential feature of beliefs is that they are revisable whenever the
agent learns new information. To capture this revisable nature of beliefs, CDL
contains the conditional belief operator Bel i(C|B), the meaning of which is
that agent i believes C if she learnt B. Thus the conditional belief has an
hypothetical meaning: if agent i learnt B, she would believe that C was true
in the state of the world before the act of learning B. The logic captures the
agent’s changing beliefs in an unchanging world. For this reason Baltag and
Smets [3] qualify this logic as “static” in contrast to “dynamic” epistemic logic,
where the very act of learning (by some form of announcement) may change the
agent’s beliefs. The logic CDL in itself is used as the basic formalism to study
further dynamic extensions of epistemic logics, determined by several kinds of
epistemic/doxastic actions. Notice that both unconditional beliefs and knowl-
edge can be defined in CDL: Bel iB (agent i believe B) as Bel i(B|>), and KiB
(agent i knows B) as Bel(?|¬B), the latter meaning that i considers impossible
(inconsistent) to learn ¬B.

To exemplify the language, consider a variant of the three-wise-men puzzle,
where agent amay initially believe that she has a white hat: BelaWa. However,
if a learns that agent b knows the colour of the hat b herself wears, she might
change her beliefs and be convinced that she is wearing a black hat instead:
Bela(Ba|KbWb _KbBb). The example shows that the conditional operator is
non-monotonic in the sense that Bel i(C|A) does not entail Bel i(C|A^B) (here
A = >).

The axiomatization of the operator Bel i in CDL internalises the well-known
AGM postulates of belief revision 3 .

The semantic interpretation of CDL is defined in terms of the so-called
epistemic plausibility models. In these models, to each agent i is associated an
equivalence relation ⇠i, used to interpret knowledge, and a well-founded pre-
order �i on worlds. The relation �i assesses the relative plausibility of worlds
according to an agent i and is used to interpret conditional beliefs: i believes
B conditionally on A in a world x if B holds in the most plausible worlds
accessible from x in which A holds, where the “most plausible worlds” for an
agent i are the �i-minimal ones. This semantic approach has been dominant
in the studies of CDL; in addition to [5] and [3] we mention works by Pacuit
[19], Van Ditmarsch et al. [20] and Demay [6].

In this paper we provide an alternative semantics, based on neighbourhood
models, for CDL. Neighbourhood models are often used in the interpretation
of non-normal modal logics. In the present setting they can be seen as a multi-
agent generalization of Lewis’ spheres models for counterfactual logics. Notice
that finite sphere models have been used to define semantically (mono-agent)
belief revision since Grove’ seminal work [8]. In neighbourhood models to each
world x and agent i is associated a set Ii(x) of nested sets of worlds; each
set ↵ 2 Ii(x) represents, so to say, a relevant piece of information that can

3 We cannot mention here the vast literature on the relation between belief revision, condi-
tional logics, the Ramsey Test, and Gärdenfors Triviality Result.
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be used to establish the truth of an epistemic/doxastic statement. The in-
terpretation of the conditional belief operator Bel i then coincides with Lewis’
semantics of the counterfactual operator. The equivalence between plausibility
models and neighbourhood models does not come as totally unexpected: for
the mono-agent case, it was suggested or stated without proof by Board [5],
Pacuit [19], Marti et al [11], and it is based on an old result about the corre-
spondence between partial orders and Alexandro↵ topologies [1]. We will detail
the correspondence for the multi-agent case.

We believe that neighbourhood models provide by themselves a terse inter-
pretation of the epistemic and doxastic modalities, abstracting away from the
relational information specified in plausibility models. Moreover, it is worth
noticing that in these models the interpretation of unconditional beliefs and
knowledge results in the standard universal/existential neighbourhood modal-
ities.

Up to this moment, the logic CDL has been studied only from a semantic
viewpoint, and no proof-system or calculus is known for it. Our main goal is
to provide one. On the basis of neighbourhood semantics we develop a labelled
sequent calculus called G3CDL. We follow the general methodology of [13] to
develop labelled calculi for modal logics. Similarly to [14], the calculusG3CDL
makes use of world and neighbourhood labels, thereby importing the semantics,
limited to the essential, into the syntax. In G3CDL, each connective is han-
dled by symmetric left/right rules, whereas the properties of neighbourhood
models are handled by additional rules independent of the language of CDL.
The resulting calculus is analytical and enjoys strong proof-theoretical proper-
ties, the most important being admissibility of cut and contraction, for which
we provide a syntactical proof. Through the adoption of a standard strategy,
we show that the calculus G3CDL provides a decision procedure for CDL.
We shall also prove the semantic completeness of the calculus: it is possible
to extract from a failed derivation a finite countermodel of the initial formula.
This result combined with the soundness of the calculus yields a constructive
proof of the finite model property of CDL.

2 The logic of conditional beliefs: Axiomatization and
semantics

The language of CDL is defined from a denumerable set of atoms Atm by means
of propositional connectives and the conditional operator Bel i, where i ranges
over a set of agents A. In the following, P denotes an atom and i an agent. The
formulas of the language are generated according to the following definition:

A := P | ? | ¬A | A ^A | A _A | A � A | Bel i(A|A)

The conditional belief operator Bel i(C|B) is read “agent i believes C, given
B.” As mentioned in the introduction, we may define the unconditional belief
and knowledge operator in terms of conditional belief:

Bel iA =def Bel i(A|>) (belief)
KiA =def Bel i(?|¬A) (knowledge)
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An axiomatization of CDL has been discussed in [5], [19], [3]. We present below
Board’s axiomatization, which is formulated using only the conditional belief
operator. Equivalent axiomatizations that make use of both the belief operator
and the knowledge operator have been given by Baltag and Smets [2], [4], [3],
and Pacuit [19]. The axiomatization of CDL extends the classical propositional
calculus by the following axioms and rules:

(1) If ` B, then ` Bel i(B|A)
(2) If ` A �⇢ B, then ` Bel i(C|A) �⇢ Bel i(C|B)
(3) (Bel i(B|A) ^ Bel i(B � C|A)) � Beli(C|A)
(4) Bel i(A|A)
(5) Bel i(B|A) � (Bel i(C|A ^B) �⇢ Bel i(C|A))
(6) ¬Bel i(¬B|A) � (Bel i(C|A ^B) �⇢ Bel i(B � C|A))
(7) Bel i(B|A) � Bel i(Bel i(B|A)|C)
(8) ¬Bel i(B|A) � Bel i(¬Bel i(B|A)|C)
(9)A � ¬Bel i(?|A)

In terms of Belief Revision, the above axioms may be understood as an epis-
temic and internalized version of the AGM postulates. Some quick remarks (cf.
[5] for a deeper discussion): The distribution axiom (3) and the epistemization
rule (2) express deductive closure of beliefs. The success axiom (4) ensures that
the learned information is included in the set of beliefs. Axioms (5) and (6)
encode the minimal change principle, a basic assumption of belief revision (see
the correspondence with AGM postulates K*7 and K*8). Axiom (9) ensures
that learning a true information cannot lead to inconsistent beliefs (it roughly
corresponds to AGM K*5). Axioms (7) and (8) express positive and negative
introspection for belief. Observe that from the above axioms it is possible to
derive the standard S5 characterization of knowledge:

KiA � A KiA � KiKiA ¬KiA � Ki¬KiA

The semantics of CDL is defined in terms of epistemic plausibility models (P -
models for short; they were originally called Belief Revision Structures by
Board). These are Kripke structures that comprise for each agent two rela-
tions over worlds, namely an equivalence relation, which defines knowledge (as
in standard epistemic models) and a plausibility relation, which is used to de-
fine beliefs. The intuition is that the beliefs of an agent are the propositions
which hold in the worlds considered as the most plausible by the agent.

A pre-order � over a set W is a reflexive and transitive relation over W .
Given S ✓ W , � is connected over S if for all x, y 2 S either x � y or
y � x. An infinite descending �-chain over W is a sequence of elements of
W {xn}n�0 such that for all n, xn+1 � xn but xn 6� xn+1. We say that �
is well-founded over W if there are no infinite descending �-chains over W .
Given S ✓ W , let Min�(S) ⌘ {u 2 S | 8z 2 S(z � u implies u � z)}. Observe
that whenever � is connected over S the definition Min�(S) can be simplified
to Min�(S) = {u 2 S | 8z 2 S (u � z)}. Finally, the well-foundedness property
can be equivalently stated as: for each S ✓ W if S 6= ; then Min�(S) 6= ;.

Definition 2.1 Let A be a set of agents; an epistemic plausibility model
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M = hW, {⇠i}i2A, {�i}i2A, J Ki consists of the following: a non-empty set
W of elements called “worlds” or “states”; for each i 2 A, an equivalence re-
lation ⇠i over W (with [x]⇠i

⌘ {w | w ⇠i x}); for each i 2 A, a well-founded
pre-order �i over W ; a valuation function J K : Atm ! P(W ). We assume �i

to satisfy the following properties:

• Plausibility implies possibility : If w �i v then w ⇠i v;
• Local connectedness : If w ⇠i v then w �i v or v �i w (in other words, �i

is connected over every equivalence class of ⇠i).

The truth conditions for formulas of the language are given by inductively
extending the evaluation function J K as follows:

• For the Boolean case we have the standard clauses, JA ^BK ⌘ JAK \ JBK,
J¬AK ⌘ W � JAK, etc.

• JBel i(B|A)K ⌘ {x 2 W |Min�i
([x]⇠i

\ JAK) ✓ JBK}.
We say that a formula A is valid in a model M if JAK = W and that A is valid
in the class of epistemic plausibility models if A is valid in every P -model.
Notational convention: We often write M, x � A meaning x 2 JAK. The
notation is further shortened to x � A whenever M is unambiguous.

The axiomatization of CDL is sound and complete w.r.t. epistemic plausibility
models [5].

Theorem 2.2 (Completeness of the axiomatization) A formula A is a
theorem of CDL if and only if it is valid in the class of P -models.

The following proposition, proved by unfolding the definitions, gives an equiva-
lent formulation of the truth condition of the conditional operator Bel i provided
in Definition 2.1. From now on, we shall use this formulation.

Proposition 2.3 Given any P-model M = hW, {⇠i}i2A, {�i}i2A, J Ki, with
x 2 W , we have that M, x � Bel i(B|A) i↵: either for all y, y ⇠i x implies
y � ¬A or there is y with y ⇠i x such that y � A and 8z, z �i y implies
z � A � B.

We introduce an alternative semantics for CDL based on neighbourhood models
(N -models for short). As explained in the introduction, these are a multi-agent
version of the spheres models introduced by Lewis for counterfactual logic.

Definition 2.4 Let A be a set of agents; a multi-agent neighbourhood model
has the form M = hW, {I}i2A, J Ki where W is a non empty set of elements;
for each i 2 A, Ii is a function Ii : W ! P(P(W )), and J K : Atm ! P(W ) is
the propositional evaluation.
For i 2 A, x 2 W , Ii satisfies the following properties:

• Non-emptiness: 8↵ 2 Ii(x),↵ 6= ;
• Nesting : 8↵,� 2 Ii(x),↵ ✓ � or � ✓ ↵
• Total reflexivity : 4 9↵ 2 Ii(x) such that x 2 ↵

4 Total reflexivity entails 8x 2 W, Ii(x) 6= ;.
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• Local absoluteness : If ↵ 2 Ii(x) and y 2 ↵ then Ii(x) = Ii(y)
• Strong closure under intersection: If S ✓ Ii(x) and S 6= ; then

T

S 2 S.

The truth conditions for Boolean combinations of formulas are the standard
ones, as in P -models; for conditional belief we have:

x 2 JBel i(B|A)K i↵ 8↵ 2 Ii(x) it holds that ↵ \ JAK = ; or 9� 2 Ii(x) such
that � \ JAJ6= ; and � ✓ JA � BK

A formula A is valid in M if JAK = W . We say that A is valid in the class of
neighbourhood models if A is valid in every N -model.

Observe that strong closure under intersection always holds in finite models,
because of non-emptiness and nesting. To simplify the notation, we use the
local forcing relations introduced in [12]:

↵ �8 A i↵ 8y 2 ↵, y � A
↵ �9 A i↵ 9y 2 ↵, y � A

With this notation, the truth condition for the conditional belief operator belief
Bel i becomes:

x � Bel i(B|A) i↵ (8↵ 2 Ii(x), ↵ �8 ¬A) or (9� 2 Ii(x), � �9 A and
� �8 A � B)

With the notation just introduced the semantic definition of unconditional
belief and knowledge operators can be stated as follows:

x � Bel iB i↵ 9� 2 Ii(x),� �8 B
x � KiB i↵ 8� 2 Ii(x),� �8 B

Notice that these operators correspond to the standard modalities in neigh-
bourhood models.

We now show the equivalence between neighbourhood models and epistemic
plausibility models. The proofs make use of the basic correspondence between
partial orders and topologies recalled in Marti and Pinosio [11] and Pacuit [18],
and that dates back to Alexandro↵ [1]. However, the result must be adapted
to the present setting of multi-agent epistemic neighbourhood models.

Theorem 2.5 A formula A is valid in the class P-models if and only if it is
valid in the class of multi-agent N-models.

Proof. We first define the measure of weight of a CDL formula as follows:
w(P ) = w(?) = 1; w(¬A) = w(A) + 2; w(A � B) = w(A) + w(B) + 1 for � =
{^,_,�}; w(Beli(B|A)) = w(A) + w(B) + 3 (cf. Definition 3.2).
[only if] Given a N -model MN we build a P -model MP and we show that for
any formula A, if A is valid in MP then A is valid in MN .
LetMN = hW, {I}i2A, J Ki be a multi-agent N -model. We construct a P -model
MP = hW, {⇠i}i2A, {�i}i2A, J Ki, by stipulating:

• x ⇠i y i↵ 9↵ 2 Ii(x), y 2 ↵;
• x �i y i↵ 8↵ 2 Ii(y), if y 2 ↵ then x 2 ↵.
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We can easily show that ⇠i is an equivalence relation and that �i satisfies
the properties of reflexivity, transitivity, and plausibility implies possibility.
Properties of local connectedness and well-foundedness for �i require some
additional work.

Local connectedness : suppose that x ⇠i y holds, but neither x �i y nor
y �i x hold. By definition of �i we have for some � 2 Ii(y), y 2 � and
x /2 � and for some � 2 Ii(x), x 2 � and y /2 �. Since x ⇠i y, by reflexivity
9↵ 2 Ii(x), y 2 ↵, whence by local absoluteness Ii(y) = Ii(x). Thus both
�, � 2 Ii(x), and by nesting either � ✓ � or � ✓ � holds. In case the former
holds we get y 2 �, and in case the latter holds we have x 2 �. In both cases
we reach a contradiction.

Well-foundedness: If MN is finite there is nothing to prove. Suppose then
that MN is infinite. Suppose that there is an infinite descending chain {zk}k�0

w.r.t. �i, with all zk 2 W , so that for all k it holds that zk+1 �i zk and
zk 6�i zk+1. Observe that by definition of �i, plausibility implies possibility
and local absoluteness we obtain that for all k, h � 0, it holds Ii(zk) = Ii(zh) =
. . . = Ii(z0). Thus by definition of �i, for all k � 0 since zk 6�i zk+1, we get
that for all zk 2 {zk}k�0 there exists �zk+1 2 Ii(z0) such that: (⇤) zk+1 2 �zk+1

and zk 62 �zk+1 . Consider the set T = {�zk+1 |zk 2 {zk}k�0}. T is non-empty;
thus by the strong closure under intersection it follows that

T

T 2 T , and
also

T

T 6= ;. Obviously, we have that (⇤⇤) for all � 2 T ,
T

T ✓ �. Since
T

T 2 T it must be
T

T = �zt+1 for some zt 2 {zk}k�0. But by using (⇤) twice
(namely for zt+1 and for zt+2) we have zt+1 2 �zt+1 and zt+1 62 �zt+2 , thus
T

T = �zt+1 6✓ �zt+2 against (⇤⇤).

We now prove that for any x 2 W and formula A it holds that

(a) MN , x � A i↵ MP , x � A

We proceed by induction on the weight of A. The base case (A atomic) holds by
definition; for the inductive cases, we consider only A = Bel i(C|B). To simplify
notation we write u �P B instead of MP , u � B and u �N B instead of
MN , u � B. Direction [)] of statement (a) easily follows from the definitions.
As for the opposite direction, suppose that x �P Bel i(C|B) holds. This means
that either 8y y ⇠i x implies y �P ¬B or there exists w such that w ⇠i x and
w �P B and 8z, z �i w implies z �P B � C. There are two cases to consider.
If the first disjunct holds, by definition and by inductive hypothesis statement
(a) is met. We explicitly prove the case in which the second disjunct holds.
Suppose that there exists w such that w ⇠i x and w �P B and 8z, z �i w
implies z �P B � C. From w ⇠i x (hypothesis) it follows by definition that
9↵ 2 I(x), w 2 ↵. By local absoluteness, I(x) = I(w). Now consider the set
S = {� 2 I(x)|w 2 �}. It holds that ↵ 2 S, and that S 6= ;. Let � = \S. By
strong closure under intersection, � 2 S ✓ Ii(x); thus � 2 Ii(x). But w 2 �
and since we have w �P B, by inductive hypothesis we also have w �N B. We
have obtained that � �9 B. We still have to prove that � �8 B � C. Given
u 2 �, we want to prove that u �N B � C. We first show that u �i w. To
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this purpose (by definition of �i), let � 2 I(w) with w 2 � we have to show
that u 2 �: since I(x) = I(w), also � 2 I(x), whence, � 2 S, so that � ✓ �,
and therefore u 2 �. Since u �i w by the hypothesis we have u �P B � C and
finally by induction hypothesis u �N B � C.
Next, we show that if A is valid in MP then A is also valid in MN . Suppose
that A is valid in MP . This means that for all w 2 W , we have w �P A, thus
by (a) we have also w �N A for all w 2 W , which means that A is valid in
MN . Finally, let A be valid in the class of P -models. We want to show that
A is also valid in the class of N -models. Given a N -model MN , we build an
P -model MP as above. By hypothesis A is valid in MP and for what we have
just shown A is valid in MN .

[If] Given a P -model MP we build an N -model MN and we show that for any
A, if A is valid in MN then A is valid in MP . Let MP = hW, {⇠i}i2A, {�i

}i2A, J Ki be an P -model. We build an N -model MN as follows. Let u 2 W ,
and define its downward closed set #�i u w.r.t. �i as #�i u = {v 2 W |v �i u}.
We now define the model MN = hW, {I}i2A, J Ki, where the neighbourhood
for any x 2 W is Ii(x) = {#�i u|u ⇠i x}.

It can be easily proved that MN satisfies all the properties of an N -model;
we show only the case of the strong closure under intersection. In the finite
case, this property immediately follows from properties of non-emptiness and
nesting. Let us consider the infinite case. Let S ✓ Ii(x), S 6= ;, with S
countable so that S = {↵h|h > 0} where ↵h =#�i xh for xh ⇠i x. We prove
that (⇤) 9↵h 2 S such that 8↵k 2 S,↵h ✓ ↵k. If (⇤) holds then ↵h =

T

S
and ↵h 2 S and the proof is over. Suppose by contradiction that (⇤) does
not hold. This means that 1) 8↵h 2 S 9↵k 2 S,↵h * ↵k. Thus, by the
property of spheres nesting 2) 8↵h 2 S 9↵k 2 S,↵k ⇢ ↵h. From 2), by
denumerable dependent choice we build an infinite (strictly decreasing) chain
of neighbourhoods ↵1 � ↵2 � ↵3 � . . . . For every n � 1 we have by definition
that ↵n =#�i un. Let vn 2 ↵n � ↵n+1, vn+1 2 ↵n+1 � ↵n+2, etc. We have
vn+1 �i un+1 by construction and it is enough to prove that un+1 �i vn to
conclude by transitivity that vn+1 �i vn. By construction, we have vn �i un+1

and therefore by local connectedness, un+1 �i vn. Moreover by vn �i un+1 it
also follows that vn �i vn+1. We have thus an infinitely descending �i-chain of
worlds {vn}n�1, against the assumption of well-foundedness of W . We reached
a contradiction from the negation of (⇤); therefore, (⇤) holds.

We now have to prove that for any x 2 W and formula A, it holds that
(b) MP , x � A i↵ MN , x � A. The proof strategy is the same employed in
the previous case. Next, as above, we show that if A is valid in MN then A is
also valid in MP . Finally, let A be valid in the class of N -models. We want to
show that A is also valid in the class of P -models. Given an P -model MP , we
build an N -model MN as described. By hypothesis A is valid in MN and by
what we have just shown A is valid in MP . 2

Corollary 2.6 A formula A is a theorem of CDL if and only if it is valid in
the class of neighbourhood models.
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Observe that the correspondence between plausibility and neighbourhood
models holds for infinite models as well. For this reason, the correspondence
can probably be used to establish strong completeness of CDL, which at present
is an open issue, with respect to any of the two semantics.

Initial sequents

x : P,� ) �, x : P x : ?,� ) � � ) �, x : >
Rules for local forcing

x : A, x 2 a, a �8 A,� ) �

x 2 a, a �8 A,� ) �
L�8

x 2 a,� ) �, x : A

� ) �, a �8 A
R�8 (x fresh)

x 2 a, x : A,� ) �

a �9 A,� ) �
L�9 (x fresh)

x 2 a,� ) �, x : A, a �9 A

x 2 a,� ) �, a �9 A
R�9

Propositional rules

� ) �, x : A

x : ¬A,� ) �
L¬

x : A,� ) �

� ) �, x : ¬A
R¬

x : A, x : B,� ) �

x : A ^ B,� ) �
L^

� ) �, x : A � ) �, x : B

� ) �, x : A ^ B
R^

x : A,� ) � x : B,� ) �

x : A _ B,� ) �
L_

� ) �, x : A, x : B

� ) �, x : A _ B
R_

� ) �, x : A x : B,� ) �

x : A � B,� ) �
L�

x : A,� ) �, x : B

� ) �, x : A � B
R�

Rules for conditional belief

a 2 Ii(x), a �9 A,� ) �, x �i B|A
� ) �, x : Beli(B|A)

RB (a fresh)

a 2 Ii(x), x : Beli(B|A),� ) �, a �9 A x �i B|A, a 2 Ii(x), x : Beli(B|A),� ) �

a 2 Ii(x), x : Beli(B|A),� ) �
LB

a 2 Ii(x),� ) �, x �i B|A, a �9 A a 2 Ii(x),� ) �, x �i B|A, a �8 A � B

a 2 Ii(x),� ) �, x �i B|A RC

a 2 Ii(x), a �9 A, a �8 A � B,� ) �

x �i B|A,� ) �
LC(a fresh)

Rules for inclusion

a ✓ a,� ) �

� ) �
Ref

c ✓ a, c ✓ b, b ✓ a,� ) �

c ✓ b, b ✓ a,� ) �
Tr

x 2 a, a ✓ b, x 2 b,� ) �

x 2 a, a ✓ b,� ) �
L✓

Rules for semantic conditions

a ✓ b, a 2 Ii(x), b 2 Ii(x),� ) � b ✓ a, a 2 Ii(x), b 2 Ii(x),� ) �

a 2 Ii(x), b 2 Ii(x),� ) �
S

x 2 a, a 2 Ii(x),� ) �

� ) �
T (a fresh)

a 2 Ii(x), y 2 a, b 2 Ii(x), b 2 Ii(y),� ) �

a 2 Ii(x), y 2 a, b 2 Ii(x),� ) �
A1

a 2 Ii(x), y 2 a, a 2 Ii(y),� ) �

a 2 Ii(x), y 2 a,� ) �
A2

Table 1. Sequent calculus G3CDL
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3 Sequent calculus

In this section we present a labelled sequent calculus G3CDL for CDL based
on neighbourhood semantics. As shown in Table 1, the calculus G3CDL has
two kinds of labels: labels for worlds x, y. . . . and labels for neighbourhoods
a, b . . . , as in the ground calculus for neighbourhood semantics introduced in
[12].
The meaning of the expressions employed in the calculus is defined as follows:

a �9 A ⌘ 9x(x 2 a & x � A); a �8 A ⌘ 8x(x 2 a �! x � A)
x �i B|A ⌘ 9c(c 2 Ii(x) & c �9 A & c �8 A � B)
x : Bel i(B|A) ⌘ 8a 2 Ii(x)(a �8 ¬A) or 9b 2 Ii(x)(b �9 A & b �8 A � B)

Here � denotes the forcing condition of relational semantics; to distinguish
the semantic notion and its syntactic counterpart, and for the sake of a more
compact notation, we employ a colon in the labelled calculus. The propositional
rules of G3CDL, the basic labelled modal system, are given as in [13], while
the rules for the local forcing relation are defined as in [12].

Furthermore, each semantic condition on neighbourhood models (Definition
2.4) is in correspondence with a rule in the calculus. Rule (S) corresponds to
the property of nesting in Definition 2.4; (T ) corresponds to total reflexivity,
and (A1) and (A2) to local absoluteness. As for non-emptiness, the property is
expressed by the rules for local forcing. The property of strong closure under
intersection needs not be expressed, since the property holds in finite models
and we shall prove that the logic has the finite model property.

Observe that some rules maintain their principal formula in the premisses:
this is needed to ensure invertibility of the rules and admissibility of contraction.

Example 3.1 We show a derivation of the left-to-right direction of axiom
(6). We omit the derivable left premisses of rule (RC) in D and of rule (LB)
in the final derivation.

D :

y : A · · · ) . . . y : A y : B · · · ) . . . y : B

y : A, y : B, y 2 b, c 2 Ii(x), c �9 A, b 2 Ii(x) · · · ) . . . y : A ^ B
R^

y : A, y : B, y 2 b, c 2 Ii(x), c �9 A, b 2 Ii(x) · · · ) . . . b �9 A ^ B
R�9

y 2 b, c 2 Ii(x), c �9 A, b 2 Ii(x) · · · ) . . . b �9 A ^ B, y : A � ¬B

R�,R¬

c 2 Ii(x), c �9 A, b 2 Ii(x) · · · ) . . . b �9 A ^ B, b �8 A � ¬B
R�8

c 2 Ii(x), c �9 A, b 2 Ii(x) · · · ) . . . b �9 A ^ B, x �i ¬B|A
RC

b 2 Ii(x), b �9 A, b �8 A � C, a �9 A ^ B · · · ) . . . x : Beli(¬B|A), b �9 A ^ B
RB

E :

z : A · · · ) . . . z : A z : c · · · ) . . . z : C

z : A � C, z : A, z : B, z 2 b, b 2 Ii(x), b �9 A, b �8 A � C, a �9 A ^ B, · · · ) . . . z : C
L�

z : A, z : B, z 2 b, b 2 Ii(x), b �9 A, b �8 A � C, a �9 A ^ B · · · ) . . . z : C
L�8

z 2 b, b 2 Ii(x), b �9 A, b �8 A � C, a �9 A ^ B · · · ) . . . z : (A ^ B) � C

R�,L^

b 2 Ii(x), b �9 A, b �8 A � C, a �9 A ^ B · · · ) . . . b �8 (A ^ B) � C
R �8
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.

.

.
D

.

.

.
E

b 2 Ii(x), b �9 A, b �8 A � C, a 2 Ii(x), a �9 A ^ B, x : Beli(C|A) ) x : Beli(¬B|A), x �i C|A ^ B
RC

x �i C|A, a 2 Ii(x), a �9 A ^ B, x : Beli(C|A) ) x : Beli(¬B|A), x �i C|A ^ B
LC

a 2 Ii(x), a �9 A ^ B, x : Beli(C|A) ) x : Beli(¬B|A), x �i C|A ^ B
LB

x : Beli(C|A) ) x : Beli(¬B|A), x : Beli(C|A ^ B)
RB

x : ¬(Beli(¬B|A)), x : Beli(C|A) ) x : Beli(C|A ^ B)
L¬

Rules for unconditional belief and knowledge

The modal operators of belief and knowledge can be defined semantically in
terms of the conditional belief operator: Bel iA = Bel i(A|>) and KiA =
Bel i(?|¬A). By adopting these definitions, we can extend G3CDL with the
rules displayed below, which correspond to the interpretation of the two oper-
ations in the neighbourhood semantics.

a 2 Ii(x),� ) �, a �8 A

� ) �, x : KiA
LK (a fresh)

a 2 Ii(x), x : KiA, a �8 A,� ) �

a 2 Ii(x), x : KiA,� ) �
RK

a 2 Ii(x),� ) �, x : Bel iA, a �8 A

a 2 Ii(x),� ) �, x : Bel iA
LUB

a 2 Ii(x), a �8 A ) �

x : Bel iA,� ) �
RUB (a fresh)

These rules are admissible in G3CDL, i.e., whenever the premiss is derivable,
also the conclusion is. This can be proved employing the rules of G3CDL
and the rules of weakening and contraction, shown admissible in next section.
By means of example, we show admissibility of (LK) (the other rules can be
obtained in a similar way).

...a �9 ¬A ) a �9 ¬A...

a 2 Ii(x),� ) �, a �8 A

a 2 Ii(x), a �9 ¬A,� ) �, x �i ?|¬A, a �8 A
Wk

a 2 Ii(x), a �9 ¬A,� ) �, x �i ?|¬A
RC

� ) �, x : Beli(?|¬A)
RB

The left premiss of (RC), which we have not detailed, is derivable.

Structural properties

Definition 3.2 The label of formulas of the form x : A is x. The label of
formulas of the form a �8 A and a �9 A is a. The label of a formula F will
be denoted by l(F). The pure part of a labelled formula F is the part without
the label and without the forcing relation, either local (�9, �8) or worldwide
(:) and will be denoted by p(F).
The weight of a labelled formula F is the pair (w(p(F)), w(l(F))) where:

(i) for all world labels x and all neighbourhood labels a, w(x) = 0, w(a) = 1;
(ii) w(P ) = w(?) = 1; w(¬A) = w(A) + 2; w(A � B) = w(A) + w(B) + 1 for

� conjunction, disjunction, or implication; w(B|A) = w(A) + w(B) + 2;
w(Bel i(B|A)) = w(B|A) + 1.

Weights of labelled formulas are ordered lexicographically.
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From the definition of weight it is clear that the weight gets decreased if we
move from a formula labelled by a neighbourhood label to the same formula
labelled by a world label, or if we move (regardless the label) to a formula
with a pure part of strictly smaller weight. The following lemma is proved by
induction on formula weights:

Lemma 3.3 Sequents of the following form are derivable in G3CDL for ar-
bitrary neighbourhoods labels a, b and formulas A and B:
(i) a ✓ b,� ) �, a ✓ b (ii) a �8 A,� ) �, a �8 A (iii) a �9 A,� ) �, a �9 A
(iv) x �i B|A,� ) �, x �i B|A (v) x : A,� ) �, x : A

The definition of substitution of labels given in [13] can be extended in an
obvious way – that need not be pedantically detailed here – to all the formulas
of our language and to neighbourhood labels. With this definition we have, for
example, (a �9 A)(b/a) ⌘ b �9 A, and (x �i B|A)(y/x) ⌘ y �i B|A.

We denote by `n � ) � a derivation whose endsequent is � ) � and
which has height n, where the height of a derivation is the number of nodes
occurring in the longest derivation branch. The calculus is routinely shown
to enjoy the property of height preserving (hp for short) substitution both of
world and neighbourhood labels:

Proposition 3.4

(i) If `n � ) �, then `n �(y/x) ) �(y/x);
(ii) If `n � ) �, then `n �(b/a) ) �(b/a).

Hp-admissibility of weakening and contraction are then obtained by an easy
induction on derivation height:

Proposition 3.5 The rules of left and right weakening are hp-admissible in
G3CDL.

Theorem 3.6 All the rules of G3CDL are hp-invertible, i.e. for every rule
of the form �0)�0

�)� , if `n � ) � then `n �0 ) �0, and for every rule of the

form �0)�0 �00)�00

�)� if `n � ) � then `n �0 ) �0 and `n �00 ) �00.

The rules of contraction of G3CDL have the following form, where F is either
a “relational” atom of the form a 2 I(x) or x 2 a or a labelled formula of the
form x : A, a �8 A, a �9 A or a formula of the form x �i B|A or x : Bel i(B|A):

F ,F ,� ) �

F ,� ) �
LCtr

� ) �,F ,F
� ) �,F RCtr

Theorem 3.7 The rules of left and right contraction are hp-admissible in
G3CDL.

Theorem 3.8 Cut is admissible in G3CDL.

Proof. By double induction, with primary induction on the weight of the
cut formula and subinduction on the sum of the heights of derivations of the
premisses of cut. The cases in which the premisses of cut are either initial
sequents or obtained through the rules for ^, _, or � follow the treatment of
Theorem 11.9 of [16]. For the cases in which the cut formula is a side formula
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in at least one rule used to derive the premisses of cut, the cut reduction is
dealt with in the usual way by permutation of cut, with possibly an application
of hp-substitution to avoid a clash with the fresh variable in rules with variable
condition. In all such cases the cut height is reduced.

For space limitations, we treat only the cases in wich the cut formula is
principal in both premisses and has the form x �i B|A or x : Bel i(B|A).

(1) The cut formula is x �i B|A, principal in both premisses of cut:

a 2 Ii(x),� ) �, x �i B|A, a �9 A a 2 Ii(x),� ) �, x �i B|A, a �8 A � B

a 2 Ii(x),� ) �, x �i B|A RC

D
b 2 Ii(x), b �9 A, b �8 A � B,�0 ) �0

x �i B|A,�0 ) �0 LC

The conclusion of the cut is the sequent a 2 Ii(x),�,�0 ) �,�0. The deriva-
tion is converted into the following:

a 2 Ii(x),� ) �, x �i B|A, a �9 A x �i B|A,�0 ) �0

a 2 Ii(x),�,�
0 ) �,�0, a �9 A

Cut1
(1)

a 2 Ii(x)
3,�2,�03 ) �2,�03 Cut4

a 2 Ii(x),�,�
0 ) �,�0 Ctr⇤

where (1) is the derivation:

a 2 Ii(x),�,�
0 ) �,�0, a �8 A � B

D(a/b)

a 2 Ii(x), a �9 A, a �8 A � B,�0 ) �0

a 2 Ii(x)
2, a �9 A,�,�02 ) �,�02

Cut3

where the left premiss is obtained by Cut2 from the sequent a 2 Ii(x),� )
�, x �i B|A, a �8 A � B and x �i B|A,�0 ) �0. Observe that all four
cuts are of reduced height (Cut1 and Cut2) or reduced weight (Cut3 and Cut4)
because w(a �9 A) < w(a �8 A � B) < w(x �i B|A).

(2) The cut formula is x : Bel i(B|A), principal in both premisses of cut:

D
b 2 Ii(x), b �9 A,� ) �, x �i B|A

� ) �, x : Beli(B|A)
RB

a 2 Ii(x), x : Beli(B|A),�0 ) �0, a �9 A a 2 Ii(x), x �i B|A, x : Beli(B|A),�0 ) �0

a 2 Ii(x), x : Beli(B|A),�0 ) �0 LB

The conclusion is the sequent a 2 Ii(x),�,�0 ) �,�0. The cut is converted to
four smaller cuts as follows:

� ) �, x : Beli(B|A) a 2 Ii(x), x : Beli(B|A),�0 ) �0, a �9 A

a 2 Ii(x),�,�
0 ) �,�0, a �9 A

Cut2
(2)

a 2 Ii(x)
3,�3,�02 ) �3,�02 Cut4

a 2 Ii(x),�,�
0 ) �,�0 Ctr⇤

where (2) is the derivation:

D(a/b)

a 2 Ii(x), a �9 A,� ) �, x �i B|A a 2 Ii(x), x �i B|A,�,�0 ) �,�0

a 2 Ii(x)
2, a �9 A,�2,�0 ) �2,�0

Cut3
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where the right premiss is derived by Cut1 from � ) �, x : Bel i(B|A) and
a 2 Ii(x), x �i B|A, x : Bel i(B|A),�0 ) �0. Cut1 and Cut2 have reduced
height and the other cuts are performed on formulas of reduced weight, because
w(a �9 A) < w(x �i B|A) < w(x : Bel i(B|A)). 2

4 Soundness, termination, and completeness
We first show soundness of the calculus. We need to interpret labelled se-
quents in neighbourhood models, and to this purpose we define the notion of
realization.

Definition 4.1 Let M = hW, {I}i2A, J Ki be a neighbourhood model, S a set
of world labels, and N a set of neighbourhood labels. An SN -realization over
M consists of a pair of functions (⇢,�) such that

• ⇢ : S ! W is a function which assigns to each x 2 S an element ⇢(x) =
w 2 W ;

• � : N ! P(W ), i.e. a function which assigns to each a 2 N an element
�(a) 2 I(w), for some w 2 W .

Given a sequent � ) �, with S,N as above, and (⇢,�) an SN -realization,
we say that � ) � is satisfied in M under the SN -realization (⇢,�) if the
following conditions hold:

• M ✏⇢,� a 2 Ii(x) if �(a) 2 Ii(⇢(x)) and M ✏⇢,� a ✓ b if �(a) ✓ �(b);
• M ✏⇢,� x : A if ⇢(x) � A;
• M ✏⇢,� a �9 A if �(a) �9 A and M ✏⇢,� a �8 A if �(a) �8 A;
• M ✏⇢,� x �i B|A if for some c 2 Ii(⇢(x)), c �9 A and c �8 A � B;
• M ✏⇢,� x �i Bel i(B|A) if for all a 2 Ii(⇢(x)), a �8 A orM ✏⇢,� x �i B|A;
• M ✏⇢,� � ) � if either M 2⇢,� F for some formula F 2 � or M ✏⇢,� G
for some formula G 2 �.

Then, define M ✏ � ) � i↵ M ✏⇢,� � ) � for every SN- realization (⇢,�). A
sequent � ) � is said to be valid if M ✏ � ) � holds for every neighbourhood
model M, i.e. if � ) � is satisfied for every model M and for every SN -
realization (⇢,�).

Theorem 4.2 (Soundness) If a sequent � ) � is derivable in the calculus,
then it is valid in the class of multi-agent neighbourhood models.

We now show that, by adopting a suitable proof search strategy, the calculus
yields a decision procedure for CDL. We also prove the completeness of the
calculus under the same strategy. The adoption of the strategy is not strictly
necessary for completeness; however, it ensures that we can extract a finite
countermodel from an open or failed derivation branch. Although the termi-
nation proof has some similarity with the one in [14], for G3CDL it is more
di�cult due to the specific semantic rules, in particular local absoluteness.

As often happens with labelled calculi, the calculus G3CDL in itself is
non-terminating in the sense that a root-first (i.e. upwards) construction of a
derivation may generate infinite branches. Here below is an example (we omit
writing the derivable left premisses of LB):
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.

.

.
c 2 Ii(x), c �9 A, c �8 A � B...x : Beli(B|A) ) x �i C|A

x �i B|A, b 2 Ii(x), b �9 A, b �8 A � B, a 2 Ii(x), a �9 A, x : Beli(B|A) ) x �i C|A
LC

b 2 Ii(x), b �9 A, b �8 A � B, a 2 Ii(x), a �9 A, x : Beli(B|A) ) x �i C|A
LB

x �i B|A, a 2 Ii(x), a �9 A, x : Beli(B|A) ) x �i C|A
LC

a 2 Ii(x), a �9 A, x : Beli(B|A) ) x �i C|A
LB

x : Beli(B|A) ) x : Beli(C|A)
RB

The loop is generated by the application of rules (LB) and (LC). Our aim is
to specify a strategy which ensures termination by preventing any kind of loop.
The main point is to avoid redundant (backwards) applications of rules. To
define precisely this notion we associate to each rule a saturation condition.

Definition 4.3 Given a derivation branch B of the form �0 ) �0, ...,�k )
�k,�k+1 ) �k+1, ... where �0 ) �0 is the sequent) x0 : A0, let # �k (respec-
tively # �k) denote the union of the antecedents (respectively the succedents)
occurring in the branch from the root �0 ) �0 up to �k ) �k.

For each rule (R), we say that a sequent � ) � satisfies the saturation
condition associated to (R) if the following hold: for rule (L^), if x : A^B 2 �,
then x : A 2# � and x : B 2# �. The other propositional conditions are similar,
and can be found in [14]. Conditions for the other rules are the following: (Rf)
If a is in �, � then a ✓ a is in �; (Tr) If a ✓ b and b ✓ c are in �, then a ✓ c
is in �; (L ✓) If x 2 a and a ✓ b are in �, then x 2 b is in �; (R �8) If a �8 A
is in # �, then for some x there is x 2 a in � and x : A in # �; (L �8) If x 2 a
and a �8 A are in �, then x : A is in �; (R �9) If x 2 a is in � and a �9 A is
in �, then x : A is in # �; (L �9) If a �9 A is in # �, then for some x there is
x 2 a in � and x : A is in # �; (RB) If x : Bel i(B|A) is in # �, then for some
i 2 A and for some a, a 2 Ii(x) is in �, a �9 A is in # � and x �i B|A is in
# �; (LB) If a 2 Ii(x) and x : Bel i(B|A) are in �, then either a �9 A is in # �
or x �i B|A is in # �; (RC) If a 2 Ii(x) is in � and x �i B|A is in �, then
either a �9 A or a �8 A � B are in # �; (LC) If x �i B|A is in # �, then for
some i 2 A and for some a, a 2 Ii(x) is in �, a �9 A and a �8 A � B are in
# �; (T ) For all x occurring in # �[ # �, for all i 2 A there is an a such that
a 2 Ii(x) and x 2 a are in �; (S) If a 2 Ii(x) and b 2 Ii(x) are in �, then a ✓ b
or b ✓ a are in �; (A1) If a 2 Ii(x) and y 2 a are in �, then if b 2 Ii(x) is in
� also b 2 Ii(y) is in �; If b 2 Ii(y) is in � also b 2 Ii(x) is in � (for (A2) is
similar).
Furthermore, a sequent � ) � is saturated if

(Init) There is no x : P in � \�;
(L?) There is no x : ? in �;
� ) � satisfies all saturation conditions listed above.

To analyse the interdependencies between labels in a sequent we introduce the
following:
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Definition 4.4 Given a branch B as in Definition 4.3, a neighbourhood label
a and world labels x, y, all occurring in # �k, we define:

• k(x) = min{t | x occurs in �t}; we similarly define k(a).
• x !g a (read “x generates a”) if for some t  k and i 2 A, k(a) = t and
a 2 Ii(x) occurs in �t.

• a !g x (read “a generates x”) if for some t  k and i 2 A, k(x) = t and
x 2 a occurs in �t.

• x
w! y (read “x generates y”) if for some a it holds that x !g a and

a !g y.

Lemma 4.5 Given a branch B as in Definition 4.3, we have that (a) the rela-
tion

w! is acyclic and forms a tree with root x0 and (b) all world labels occurring

in B are nodes of the tree, that is letting
w!⇤

be the transitive closure of
w!, if

u occurs in # �k, then x0
w!⇤

u.

Proof. (a) immediately follows from the definition of relation !g and from
the sequent calculus rules, (b) easily proven by induction on k(u) 6 k. 2

We can now detail the proof-search strategy. A rule (R) is said to be applicable
to a world label x if R is applicable to a labelled formula with label x occurring
in the denominator of a rule. In case of rules (A1), (A2) of local absoluteness,
we say the rule is applied to x (rather than to y).

Definition 4.6 When constructing root-first a derivation tree for a sequent
) x0 : A, apply the following strategy:

(i) No rule can be applied to an initial sequent;
(ii) If k(x) < k(y) all rules applicable to x are applied before any rule appli-

cable to y.
(iii) Rule (T ) is applied as the first one to each world label x.
(iv) Rules which do not introduce a new label (static rules) are applied be-

fore the rules which do introduce new labels (dynamic rules), with the
exception of (T ), as in (iii);

(v) Rule (RB) is applied before rule (LC);
(vi) A rule (R) cannot be applied to a sequent �i ) �i if # �i and / or # �i

satisfy the saturation condition associated to (R).

It follows from the strategy that if x
w! y, every rule applicable to x is applied

before any every rule applicable to y. In the previous example, the loop would
have been stopped at the second application (root-first) of (LB), because the
application of (LB) would violate condition (vi): the branch already satisfies
the saturation condition for (LB), because x �i B|A is already in # �.
As an easy consequence of conditions (ii) and (iv) of the strategy, we have:

Lemma 4.7 Let us consider a branch B as in Definition 4.3 and two labels x, y

such that x
w!⇤

y. Then for all b, if b 2 Ii(x) 2 �k then also b 2 Ii(y) 2 �k.

As usual, the size of a formula A, denoted by |A|, is the number of symbols
occurring in A. The size of a sequent � ) � is the sum of all the sizes of the
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formulas occurring in it. The following Lemma and Proposition are needed to
prove termination.

Lemma 4.8 Given a branch B as in Definition 4.3 and a world label x, we
define N(x) = {a | x !g a} as the set of neighbourhood labels generated by

x, and W (x) = {y | x w! y} as the set of world labels generated by x. The
size of N(x) and W (x) is finite, more precisely: Card(N(x)) = O(|A0|) and
Card(W (x)) = O(|A0|2).

Proposition 4.9 Any derivation branch B = �0 ) �0, ...,�k ) �k,�k+1 )
�k+1, ... of a derivation which starts from �0 ) �0, where �0 ) �0 has the
form ) x0 : A0, and which is built in accordance with the Strategy, is finite.

Proof. Let us consider a branch B. Suppose by contradiction that B is not
finite, let �⇤ =

S

k �k and �⇤ =
S

k �k. Then �⇤ is infinite. All formulas oc-
curring with a label in �⇤ are subformulas of A0, but the subformulas of A0 are
finitely many (namely they are O(|A0|). Thus �⇤ must contain infinitely many
labels. In the light of Lemma 4.8, we have that �⇤ must contain infinitely many
world labels, since each world label x generates only O(|A0|) neighbourhood

labels. Let us consider now the tree determined by the relation
w!⇤

with root
x0. By Lemma 4.5, each label in any �k occurs in that tree, therefore the tree

determined by
w!⇤

is infinite. By previous lemma, every label in the tree has
O(|A0|2) successors, thus a finite number. By König’s lemma, the tree must
contain an infinite path: x0

w! x1
w! . . .

w! xt
w! xt+1 . . ., with all xt being

di↵erent. We observe that (a) infinitely many xt must be generated by dynamic
rules using some subformulas of A0, but (b) these formulas are finitely many,
thus there must be a subformula of A0 which is used infinitely many times
to “generate” world labels (or better to generate a neighbourhood label from
which a further world label is generated). There are two cases: this subformula
is of type Bel i(D|C) occurring in �⇤ or it is of type �i B|A occurring in �⇤

(in this latter case it is not properly a subformulas of A0 but it comes from
one of them). In the first case it must occur that for some xt we have that
xt : Bel i(D|C) occurs in some �s(xt) and for some a, such that k(a) = s(xt)+1,
we have that a 2 Ii(xt), a �9 C 2 �s(xt)+1 and xt �i D|C 2 �s(xt)+1. More-
over, we have a !g xt+1. But at the same time there must be in the sequence
an xr with r > t, such that xr : Bel i(D|C) occurs in some �s(xr) and for a new
b, that is with k(b) = s(xr) + 1, we have that (⇤) b 2 Ii(xr), b �9 C 2 �s(xr)+1

and xr �i D|C 2 �s(xr)+1 and b !g xt+1. By Lemma 4.7, we have that
a 2 Ii(xr); thus a itself fulfils the saturation condition for (RB) applied to
xr : Bel i(D|C) 2 �s(xr), and step (⇤) violates the strategy. We have thus
reached a contradiction.

In the second case the situation is similar: for some t, xt �i D|C occurs in
some �s(xt) and for a new a, with k(a) = s(xt)+1, we have that a 2 Ii(xt), a �9

C 2 �s(xt)+1 and a �8 C � D 2 �s(xt)+1. Moreover, we have that a !g xt+1.
Similarly there must be an xr in the sequence with r > t, such that xr �i D|C
occurs in some �s(xr) and for a new b, with k(b) = s(xr) + 1, we have that we
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have that (⇤⇤) b 2 Ii(xr), b �9 C 2 �s(xr)+1 and b �8 C � D 2 �s(xr)+1. By
Lemma 4.7, we have that a 2 Ii(xr); thus a itself fulfils the saturation condition
for (LC) applied to xr �i D|C 2 �s(xr), so that step (⇤⇤) violates the strategy.
Again, we have reached a contradiction. 2

Termination of proof search under the strategy is now an obvious consequence:

Theorem 4.10 Proof search for any sequent of the form ) x0 : A0 always
comes to an end after a finite number of steps. Furthermore, each sequent that
occurs as a leaf of the derivation tree is either an initial sequent or a saturated
sequent.

The above theorem provides a decision procedure for CDL. Even without a
precise analysis of its complexity, it is easy to see that each proof branch may
have an exponential size with respect to the size of the formula A0 at the root
of the derivation. The exact complexity of logic CDL has not been determined.
In [9] it is shown that the single-agent version of CDL is CoNP. However, since
S5n, the multi-agent version of S5, is embeddable in CDL via the definition
of the knowledge operator Ki, by the results in [10] we get that PSPACE is
a lower bound for the complexity of CDL. We strongly conjecture that this is
also its upper bound; this will be the object of future research, together with
a strategy to obtain from G3CDL an optimal decision procedure for CDL.
The calculus is complete under the terminating strategy.

Theorem 4.11 Let � ) � be the upper sequent of a saturated branch B in
a derivation tree. Then there exists a finite countermodel M to � ) � that
satisfies all formulas in # � and falsifies all formulas in # �.

Proof. Let � ) � be the upper sequent of a saturated branch B. By theorem
4.10 ,B is finite. We construct a model MB and an SNB-realization (⇢,�), and
show that it satisfies all formulas in # � and falsifies all formulas in # �.
Let SB = {x |x 2 (# �[ # �)} and NB = {a | a 2 (# �[ # �)}. Then,
associate to each a 2 NB a neighbourhood ↵a, such that ↵a = {y 2 SB|y 2
a belongs to �}, thus ↵a ✓ SB. We define a neighbourhood model MB =
hW, Ii, J Ki as

• W = SB, i.e. the set W consists of all the labels occurring in the saturated
branch B;

• For each x 2 W , Ii(x) = {↵a|a 2 Ii(x) belongs to # �};
• For P atomic, JP K = {x 2 W |x : P belongs to # �}.

Employing the saturation conditions we can easily prove that if a ✓ b belongs
to �, then ↵a ✓ �b and that MB satisfies all properties of a multi-agent
neighbourhood model, namely non-emptiness, total reflexivity, nesting, and
local absoluteness (strong closure under intersection follows from finiteness).
We define a realization (⇢,�) such that ⇢(x) = x and �(a) = ↵a. We then
prove that

[Claim 1] if F is in # �, then MB ✏ F
[Claim 2] if F is in # �, then MB 2 F
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where F denotes any formula of the language, i.e. F = a 2 Ii(x), x 2 A, a ✓
b, x �8 A, x �9 A, x �i B|A, x : A. The two claim are routinely proved
by induction on the weight of the formula F using the fact that � ) � is
saturated and employing, whenever needed, the induction hypothesis.

2

The completeness of the calculus is an obvious consequence:

Theorem 4.12 If A is valid then it is provable in G3CDL.

Theorem 4.11 together with soundness of G3CDL provide a constructive proof
of the finite model property of the logic CDL: if A is satisfiable in a model,
then by the soundness of G3CDL we have that ¬A is not provable. Thus by
Theorem 4.11 we can build a finite countermodel that falsifies ¬A, i.e. that
satisfies A.

5 Conclusions, related works, and further research

We have proposed an alternative semantics, based on neighbourhood models,
for the logic CDL of conditional beliefs. On the basis of this semantics, which
is is a multi-agent version of Lewis’ spheres models, we have developed the
labelled sequent calculus G3CDL, following the methodology of [13], [12], [14].
The calculus G3CDL is analytical and enjoys cut elimination, admissibility of
the other structural rules, and invertibility of all the rules. Moreover, on the
basis of this calculus, we obtain a decision procedure for the logic CDL under a
natural proof search strategy. The completeness of the calculus is established
by means of a finite procedure which constructs a countermodel from a failed
(or open) derivation branch. The finite countermodel construction provides in
itself a constructive proof of the finite model property of the logic.

Although no proof-system for CDL was known before the calculus G3CDL,
a few labelled calculi for conditional logics have been studied in the literature,
in [15], [7], [17]. Observe however that all these calculi are based either on the
relational semantics or on the selection function semantics; thus there is no
direct relation between the calculus presented in this paper and these works.

A number of issues are open to further investigation. On the semantical
side, other doxastic operators have been considered in the literature, such as
safe belief and strong belief [3]. We conjecture that also these operators can
be naturally interpreted in neighbourhood models and consequently captured
by extensions of the calculus G3CDL. Furthermore, CDL is the “static” logic
that underlies dynamic extensions by doxastic actions [3]. It should be worth
studying if our calculus can be extended to deal with the dynamic systems as
well.

Finally, from a computational side, to the best of our knowledge the ex-
act complexity of CDL is not known. We conjecture its upper bound to be
PSPACE; however, further investigations are needed to confirm this result.
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