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Abstract

We introduce distributive unimodal logic as a modal logic of binary relations over
posets which naturally generalizes the classical modal logic of binary relations over
sets. The relational semantics of this logic is similar to the relational semantics of
intuitionistic modal logic and positive modal logic, but it generalizes both of these
by placing no restrictions on the accessibility relation. We introduce a corresponding
quasivariety of distributive lattices with modal operators and prove a completeness
theorem which embeds each such algebra in the complex algebra of its canonical
modal frame. We then extend this embedding to a duality theorem which unifies
and generalizes the duality theorems for intuitionistic modal logic obtained by A.
Palmigiano and for positive modal logic obtained by S. Celani and A. Jansana. As
a corollary to this duality theorem, we obtain a Hennessy-Milner theorem for bi-
intuitionistic unimodal logic, which is the expansion of distributive unimodal logic by
bi-intuitionistic connectives.

Keywords: Modal logic, distributive modal logic, intuitionistic modal logic, positive
modal logic, bi-intuitionistic modal logic, duality theory.

1 Introduction

Suppose that we are given a semantically defined expansion of classical propo-
sitional logic, such as classical modal propositional logic, and we want to add
some intuitionistic flavour to it. How could we go about doing that?

Let us adopt the simple perspective that a logic is given by a category
of frames and a contravariant functor from the category of frames to some
category of algebras which assigns a complex algebra to each frame. The con-
sequence relation of the logic is identified with the quasiequational logic of this
class of complex algebras. A completeness theorem then consists in axiomatiz-
ing the quasivariety generated by this class.

In a set-based semantics, the frames are sets possibly with additional struc-
ture and the complex algebras are expansions of the Boolean algebra of all
subsets of a frame. In poset-based semantics, the frames are posets possibly
with additional structure and the complex algebras are expansions of the dis-

1 This research was supported by grant GAP202/10/1826 of the Czech Science Foundation.
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tributive lattice of all upsets of a frame. Our task is thus to define a natural
poset-based companion to a given set-based logic.

From an algebraic point of view, the natural thing to do is to drop the
Boolean negation from the signature and consider the (quasi)variety generated
by such reducts. This is the strategy followed by Dunn [5]. By contrast, our
strategy will be to start on the semantic side.

We wish to extend an operation on the powerset of a set-based frame, say
the binary operation ◦, to an operation on the set of all upsets of a poset-based
frame with the same underlying set. There are two natural ways of doing this.
One option is to define the poset-based operation as the upper interior of the
set-based operation, that is, u ∈ a ◦+ b if and only if v ∈ a ◦ b for all v ≥ u.
The other option is to define the poset-based operation as the upper closure of
a ◦ b, that is, u ∈ a ◦− b if and only if v ∈ a ◦ b for some v ≤ u.

The first of these alternatives is used in the semantics of intuitionistic logic:
the intuitionistic implication → is defined as the upper interior of classical
implication. The second alternative is used in bi-intuitionistic logic, introduced
by Rauszer [11,12]. This logic expands intuitionistic logic by a co-implication
connective, denoted as a b here, such that u ∈ a b if and only if there is
some v ≤ u such that v /∈ a and v ∈ b. It is easy to see that for the lattice
connectives ∧ and ∨, the two extensions coincide.

The goal of the present paper is to investigate the poset-based companion
of classical unimodal logic given by the connectives ∧, ∨, >, ⊥, 2+, 3− and its
expansion by → and . We call this logic distributive unimodal logic (DUML)
and we call the expansion bi-intuitionistic unimodal logic (BiIUML). Our main
result is a completeness theorem for DUML with respect to a suitable quasi-
variety of modal algebras and its extension to a duality between these algebras
and suitably topologized modal frames. In combination with known results,
this also yields a completeness and duality theorems for BiIUML.

These results generalize and unify known completeness and duality results
for intuitionistic modal logic and positive modal logic. We therefore briefly
introduce these to provide some context for the present work. We also describe
the relationship between the distributive unimodal logic presented here and the
distributive modal logic of Gehrke et al. [8].

Intuitionistic modal logic (IML), introduced and axiomatized by Fischer
Servi [6,7], expands intuitionistic propositional logic by a pair of modalities
2 and 3 which generalize the box and diamond modalities of classical modal
logic. The frames for this logic are Kripke frames for intuitionistic propositional
logic (that is, posets) equipped with a binary accessibility relation R required
to satisfy the conditions ≥ ◦ R ⊆ R ◦ ≥ and R ◦ ≤ ⊆ ≤ ◦ R. The box and
diamond modalities are then defined asymmetrically: u ∈ 2A if and only if
u(≤ ◦ R)v implies v ∈ A, whereas u ∈ 3A if and only if uRv for some v ∈ A.
Observe that the box operator is persistent by definition, while the condition
≥ ◦R ⊆ R ◦ ≥ is needed to ensure the persistence of the diamond operator.

Unlike in classical modal logic, the box and diamond modalities of IML
are not mutually interdefinable. Their interaction is captured by the axioms
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2(ϕ → ψ) → (3ϕ → 3ψ) and (3ϕ → 2ψ) → 2(ϕ → ψ). The completeness
theorem for IML was later extended to a duality by Palmigiano [9]. For a
(slightly dated) overview of research on IML, see [14] or [13].

Positive modal logic (PML), introduced and axiomatized by Dunn [5], is
the negation-free fragment of classical modal logic. A poset-based 2 relational
semantics for PML analogical to the semantics of IML was provided by Celani
and Jansana [3], who formulated a Priestley-style duality for PML [4]. This
semantics requires that the accessibility relationR satisfy the conditions≥◦R ⊆
R ◦ ≥ and ≤ ◦ R ⊆ R ◦ ≤, which ensure that both of the modal operators are
local with respect to partial order.

Both IML and PML thus place non-trivial requirements on the accessibility
relation, and furthermore that IML does not retain the symmetry between 2

and 3 present in classical modal logic. The present paper then answers the
natural question: what is the modal logic of semantically dual box and diamond
operators defined by arbitrary binary relations over posets?

Finally, a modal logic which does not fit the above semantic template of
posets equipped with a single relation is distributive modal logic (DML) intro-
duced by Gehrke et al. [8], which in addition to 2 and 3 contains primitive
modal operators corresponding to the classical modalities 2¬ and 3¬. (We
chose the name distributive unimodal logic precisely to differentiate the present
approach from DML.) This logic has a poset-based relational semantics, which
differs from the semantics of IML and PML in that each of the modal operators
has its own accessibility relation, denoted R2 and R3 in the case of 2 and 3.

As regards, the relationship between DML and DUML, one can adopt either
of the following positions. Either one can consider DML to be a fragment
of a generalization of classical multimodal logic and consider DUML to be a
generalization of classical unimodal logic, ideally with the proviso that the full
language of DUML should include connectives corresponding to 2¬ and 3¬
which are not considered here. Alternatively, one can view DUML as a special
case of DML for frames where R2 and R3 are uniquely determined by their
intersection, that is, ≤ ◦ (R2 ∩R3) ◦ ≤ ⊆ R2 and ≥ ◦ (R2 ∩R3) ◦ ≥ ⊆ R3.

The outline of the paper is as follows. In Section 2, we introduce some basic
notation and briefly overview known facts concerning the representation of dis-
tributive lattice and (bi-)Heyting algebras. In Sections 3 and 4, we introduce
DUML via its relational semantics, define the corresponding quasivariety of
modal algebras and prove the soundness of the algebraic semantics. In Section
5 defines the canonical frame of a modal algebra and obtain a completeness the-
orem which embeds each modal algebra in the complex algebra of its canonical
frame. In Section 6, we use the completeness theorem to show that the class of
all frames for DUML is not definable by modal quasiequations relative to the
class of all frames for DML. In Section 7, we consider the conditions that IML
and PML place on R and prove that in our setting they correspond to canon-

2 Strictly speaking, their semantics is formulated in terms of pre-ordered sets rather than
posets, but the distinction is irrelevant for our purposes.
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ical equations. The known completeness and duality theorems for these logics
are therefore covered by the completeness and duality theorems for DUML.
Finally, in Section 8, we formulate a duality for DUML based on the bitopo-
logical duality for distributive lattices by Bezhanishvili et al. [1] and derive a
Hennessy-Milner theorem for BiIUML as a corollary.

2 Preliminaries

By relations we will mean binary relations, and by distributive lattices and
their homomorphisms we will mean bounded distributive lattices and bound-
preserving homomorphisms. The category of posets and monotone functions
will be denoted Pos and the category of distributive lattices and their homo-
morphisms will be denoted DLat.

A Heyting algebra is a distributive lattice expanded by a binary operation
→ such that a ∧ b ≤ c if and only if b ≤ a→ c. Dually, a co-Heyting algebra is
a distributive lattice expanded by binary operation (called co-implication)
such that a ≤ b ∨ c if and only if c a ≤ b. A bi-Heyting algebra is then both
a Heyting algebra and a co-Heyting algebra. It is well known that all of these
classes of algebras are varieties.

Let (W,≤) be a poset and R be a relation on W . The opposite of (W,≤) is
the poset (W,≥). We denote the diagonal relation onW by ∆W . Given U ⊆W ,
R|U denotes the restriction of R to U , R−1[U ] = {w ∈W |wRu for some u ∈ U}
and R−1[u] = R−1[{u}] for u ∈ W . By a pre-order on (W,≤) we mean a pre-
order on the W which extends ≤.

The upward (downward) closure of U ⊆ W will be denoted U↑ (U↓). We
say that U is convex if U↑ ∩U↓ ⊆ U . We call U↑ ∩U↓ the convex closure of U .

Given any relation R ⊆ U × V , we use the abbreviations R↑ = ≤ ◦ R ◦ ≤
and R↓ = ≥◦R ◦≥. This notation will be used often in the following. We call
a relation convex if R = R↑ ∩R↓.

Let (U,≤) and (V,v) be posets. A relation R ⊆ U × V is monotone (anti-
tone) if it is an upset (downset) of Uop×V . A monotone relation pair (R↑, R↓)
between U and V is a pair consisting of a monotone relation R↑ ⊆ U × V and
an antitone relation R↓ ⊆ U × V .

The kernel of a monotone function f : (U,≤)→ (V,v) is the pre-order ≤f

on (U,≤) such that u ≤f v if and only if f(u) v f(v). A monotone function
pair from U and V is a pair of monotone functions from U and V with a
common codomain. The kernel pair of a monotone function pair f : U → W ,
g : V → W is the pair consisting of a monotone relation σ↑ : U × V such that
uσ↑v if and only if f(u) ≤ g(v) holds in W and an antitone relation σ↓ : U ×V
such that uσ↓v if and only if f(u) ≥ g(v) holds in W . The kernels of monotone
functions from a poset W are precisely the pre-orders on W and the kernel
pairs of monotone function pairs from U and V are precisely the monotone
relation pairs between U and V .

We now formulate known representation theorems for distributive lattices
and (bi-)Heyting algebras in the notation which we will later use to formulate
the completeness theorem for distributive unimodal logic. Given a poset W , let
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W+ be the distributive lattice of all upsets of W (called the complex algebra of
W ), and given a monotone function f : U → V , let f+ be the homomorphism
of distributive lattices f−1 : V + → U+. This assignment yields a functor
(−)+ : Pos→ DLat.

In the opposite direction, given a distributive lattice A, let A• be the poset
of all prime filters on A ordered by inclusion, and given a homomorphism of
distributive lattices h : A → B, let h• be the monotone function h−1 : B• →
A•. This assignment again yields a functor (−)• : DLat→ Pos.

Given a distributive lattice A, define the function ηA : A → (A•)
+ such

that U ∈ ηA(a) if and only if a ∈ U . Then ηA is an embedding of distributive
lattices. Each distributive lattice is thus a sublattice of the complex algebra
of some poset, hence the semantically defined quasiequational logic of complex
algebras of posets distributive lattices coincides with the algebraically defined
quasiequational logic of distributive lattices.

These constructions extend to Heyting (bi-Heyting) algebras and posets
with suitably defined morphisms. We say that a Heyting morphism of posets
f : (U,≤) → (V,v) is a monotone function such that f(u) v v′ implies that
u ≤ v and f(v) = v′ for some v ∈ U , and a bi-Heyting morphism of posets
is a function f : (U,≤) → (V,v) such that both f : (U,≤) → (V,v) and
f : (U,≥) → (V,w) are Heyting morphisms of posets. The functors (−)+

and (−)• then extend to contravariant functors between the category of posets
with Heyting (bi-Heyting) morphisms and the category of Heyting (bi-Heyting)
algebras and ηA is an embedding of Heyting (bi-Heyting) algebras if A is a
Heyting (bi-Heyting) algebra.

3 Modal frames

Let us start by introducing the relational semantics for distributive unimodal
logic which was outlined in the introduction. We will define frames for this logic,
their complex algebras and their p-morphisms. We then describe subframes,
simulation pairs and bisimulations.

Definition 3.1 A (modal) frame F = (W,≤, R) is a poset (W,≤) equipped
with a convex relation R.

Recall that R is convex if R↑ ∩R↓ ⊆ R. It is easily seen from the definition
of p-morphisms of modal frames given below, which only cares about R↑ and
R↓, that a poset equipped with a non-convex relation R is in fact p-isomorphic
to the same poset equipped with the convex closure of R. No loss of generality
is thus involved in assuming that R is convex. This assumption will later allow
us to obtain the right correspondence results for modal axioms.

The distributive lattice (W,≤)+ of upsets of a modal frame F = (W,≤, R)
can now be equipped with a box operator

2R(A) = {u ∈ X | if uR↑v, then v ∈ A}

and with a diamond operator

3R(A) = {u ∈ X | uR↓v for some v ∈ A}.
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More compactly, 3R(A) = (R↓)−1[A] and W \ 2R(A) = (R↑)−1[W \ A]. The
complex algebra of F is the expansion F+ of the distributive lattice (W,≤)+ by
these two operators . The Heyting (bi-Heyting) complex algebra F+

→ (F+
→, )

of F is the unique expansion of F+ by Heyting (bi-Heyting) connectives.
A (Heyting, bi-Heyting) modal quasiequation is a quasiequation in the lan-

guage of distributive lattices expanded by 2 and 3 (and →, and → and ).
A modal frame F is a model of a set of (Heyting, bi-Heyting) modal quasi-
equations Σ if F+ � Σ. The class of all models of Σ will be denoted Mod(Σ).

For any class of modal frames K, let K+ = {F+ | F ∈ K} and likewise for
K+
→ and K+

→, . The distributive unimodal logic of K is then the quasiequational
logic of K+, the intuitionistic unimodal logic of K is the quasiequational logic of
K+
→, and the bi-intuitionistic unimodal logic of K is the quasiequational logic of

K+
→, . If K is not specified, we take it to be the class of all modal frames. These

quasiequational logics can be translated into the form of sequent calculi via the
correspondence between the sequent Γ ` ∆ and the inequality

∧
Γ ≤

∨
∆.

Definition 3.2 Given modal frames F = (U,≤, R) and G = (V,v, S), a p-
morphism f : F → G is a monotone function f : (U,≤)→ (V,v) such that

• uR↑v implies f(u)S↑f(v),

• uR↓v implies f(u)S↓f(v),

• f(u)S↑v′ implies uR↑v for some v ∈ U such that f(v) ≤ v′,
• f(u)S↓v′ implies uR↓v for some v ∈ U such that f(v) ≥ v′.

A Heyting (bi-Heyting) p-morphism of modal frames is a p-morphism of
modal frames which is a Heyting (bi-Heyting) morphism of posets.

Proposition 3.3 If f : F → G is a p-morphism of modal frames, then f+ =
f−1 : G+ → F+ is a homomorphism of their complex algebras.

Proof. The proof is standard. 2

The category of modal frames and their p-morphisms will be denoted
ModPos. We now describe the images and kernels of p-morphisms.

Definition 3.4 A subframe of a frame F = (W,≤, R) is a frame (U,≤|U , R|U )
for some U ⊆W such that

• if u ∈ U and uR↑v ∈W , then w ≤ v for some w ∈ U ,

• if u ∈ U and uR↓v ∈W , then w ≥ v for some w ∈ U .

A Heyting subframe of F is a frame (U,≤|U , R|U ) for some U ⊆ W such
that U is closed under ≤ and R and

• if u ∈ U and uR↓v ∈W , then w ≥ v for some w ∈ U .

A bi-Heyting subframe of F is a frame (U,≤|U , R|U ) for some U ⊆W such
that U is closed under ≤, ≥ and R.

Proposition 3.5 The (Heyting, bi-Heyting) subframes of a modal frame F are
precisely the images of (Heyting, bi-Heyting) p-morphisms into F .
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Proof. It suffices to inspect the definition of p-morphisms. 2

Definition 3.6 Let F = (U,≤, R) and G = (V,v, S) be modal frames. A
simulation pair between modal frames F = (U,≤, R) and G = (V,v, S) is a
monotone relation pair (σ↑, σ↓) between (U,≤) and (V,v) such that

σ↑ ◦ S↑ ⊆ R↑ ◦ σ↑,
σ↓ ◦ S↓ ⊆ R↓ ◦ σ↓.

A Heyting simulation pair is a simulation pair such that

σ↑ ◦ v ⊆ ≤ ◦ σ↑.

A bi-Heyting simulation pair is a Heyting simulation pair such that

σ↓ ◦ w ⊆ ≥ ◦ σ↓.

A bisimulation is a convex relation σ such that (σ↑, σ↓) = (≤◦σ◦≤,≥◦σ◦≥)
is a bi-Heyting simulation pair.

Observe that bi-Heyting simulation pairs are precisely pairs of the form
(σ↑, σ↓) for some convex σ.

Proposition 3.7 The (Heyting, bi-Heyting) simulation pairs between modal
frames F and G are precisely the kernel pairs of (Heyting, bi-Heyting) p-
morphism pairs from F and G.

Proof. The p-morphism pairs from F and G are in bijective correspondence
with the p-morphisms from the naturally defined disjoint union of F and G. The
definition of (Heyting, bi-Heyting) simulation pairs is then just a repackaging
of the definition of (Heyting, bi-Heyting) p-morphisms. 2

4 Modal algebras

Having described the relational semantics of distributive unimodal logic, we
introduce the corresponding class of modal expansions of distributive lattices
and show that it includes the complex algebras of modal frames.

Definition 4.1 A box operator on a distributive lattice A is a unary function
2 : A → A such that 2(a ∧ b) = 2a ∧ 2b and 2> = >. A diamond operator
on a distributive lattice A is a unary function 3 : A→ A such that 3(a∨ b) =
3a ∨3b and 3⊥ = ⊥.

A modal algebra is an algebra A = (A,∧,∨,>,⊥,2,3) such that ADLat =
(A,∧,∨,>,⊥) is a distributive lattice, 2 is a box operator on ADLat, 3 is a
diamond operator on ADLat, and A satisfies the positive modal law

3b ≤ 2a ∨ c⇒ 3b ≤ 3(a ∧ b) ∨ c

and the negative modal law

3a ∧ c ≤ 2b⇒ 2(a ∨ b) ∧ c ≤ 2b.
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The opposite of A is the modal algebra Aop = (A,∨,∧,⊥,>,3,2).
A Heyting (bi-Heyting) modal algebra is an algebra which is both a modal

algebra and a Heyting (bi-Heyting) algebra.

Modal algebras form a quasivariety. On bi-Heyting modal algebras, the
positive and negative modal laws are equivalent to the equations

3(a ∧ b) 3b ≤ 2a 3b,

3a→ 2b ≤ 2(a ∨ b)→ 2b,

hence bi-Heyting modal algebras in fact form a variety. The category of modal
algebras and their homomorphisms will be denoted ModDLat.

Note that moving from A to Aop transforms the positive modal law into the
negative one and vice versa. We will often implicitly appeal to this symmetry
between boxes and diamonds to cut our proofs down to half.

Proposition 4.2 (Soundness) Every complex algebra F+ is a modal algebra.

Proof. It suffices to verify that the positive modal law holds in F+. Suppose
that 3Ra ⊆ 2Rb ∪ C and u ∈ 3Ra, u /∈ c for some a, b, c ∈ F+. Then there
are some v, w such that u ≥ vRw and w ∈ a. But then v ∈ 3Ra and v /∈ c,
therefore v ∈ 2Rb, w ∈ a ∩ b, and u ∈ 3R(a ∩ b). 2

5 Canonical frames

We now show that each modal algebra can be embedded in the complex algebra
of its suitably defined canonical frame. This means that distributive unimodal
logic is precisely the quasiequational logic of modal algebras. Since by [10]
quasiequational consequence can be captured by a simple calculus, this result
deserves to be called a completeness theorem.

To define the canonical frame A• of a modal algebra A, we equip the poset
of prime filters on A with the accessibility relation RA such that

URAV if and only if 2a ∈ U implies a ∈ V and a ∈ V implies 3a ∈ U .

We use the notation R⊇A = ⊇ ◦RA ◦ ⊇ and R⊆A = ⊆ ◦RA ◦ ⊆.
The algebra (A•)

+ is called the canonical extension of the algebra A. We
say that a quasiequation σ is canonical if A � σ implies (A•)

+ � σ. A set of
quasiequations Σ is canonical if each σ ∈ Σ is canonical. The canonicity of Σ
then implies that Σ axiomatizes the logic of Mod(Σ).

We will need some basic constructions to prove a crucial lemma about
prime filters on modal algebras. Given filters U and V on A, we define the
filter U ∧ V = {u ∧ v ∈ A | u ∈ U and v ∈ V}, the filter 3V = {a ∈ A |
3v ≤ a for some v ∈ V}, the filter 2−1V = {a ∈ A | 2a ∈ V}, and the filter
U↓(V) = {a ∈ A | v ≤ a ∨ u− for some v ∈ V, u− /∈ U}. A U↓-filter is then a
filter V such that U↓(V) = V. Observe that a directed union of U↓-filters is
again a U↓-filter.

Lemma 5.1 Let U be a prime filter and V be a filter on A. If 3V ⊆ U , then
UR⊇AV ′ for some prime V ′ ⊇ V.
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Proof. We need to find suitable prime filters U ′ and V ′ such that U ⊇
U ′RAV ′ ⊇ V. For V ′, we use Zorn’s lemma to take a maximal filter extending
V such that 3V ′ ⊆ U . Such a filter is prime: if a, b /∈ V ′, then there are some
v′1, v

′
2 ∈ V ′ such that 3(a∧v′1),3(b∧v′2) /∈ U , hence 3(a∧v′),3(b∧v′) /∈ U for

v′ = v′1 ∧ v′2, 3(a ∧ v′) ∨3(b ∧ v′) = 3((a ∨ b) ∧ (v′1 ∧ v′2)) /∈ U and a ∨ b /∈ V ′.
The inclusion 3(V ′ ∧ 2−1U↓(3V ′)) ⊆ U now holds: if v′1 ∈ V ′ and 3v′2 ≤

2a ∨ u− for some v′2 ∈ V ′, u− /∈ U , then 3(v′1 ∧ v′2) ≤ 3(a ∧ v′1 ∧ v′2) ∨ u−,
hence 3(a∧ v′1 ∧ v′2) ∈ U . Since V ′ was chosen to be a maximal filter such that
3V ′ ⊆ U , it follows that in fact 2−1U↓(3V ′) ⊆ V ′.

It now suffices to use Zorn’s lemma to extend U↓(3V ′) to a maximal U↓-filter
U ′ such that 2−1U ′ ⊆ V ′. Such a filter is prime: if a, b /∈ U ′, then a∧u′ ≤ 2v−1
and b∧u′ ≤ 2v−2 for some v−1 , v

−
2 /∈ V ′, u′ ∈ U ′, hence (a∨b)∧u′ ≤ 2v−1 ∨2v

−
2 ≤

2(v−1 ∨ v
−
2 ). Since V ′ is prime, v−1 ∨ v

−
2 /∈ V ′, thus a ∨ b /∈ U ′. 2

Corollary 5.2 UR⊇AV if and only if a ∈ V implies 3a ∈ U . UR⊆AV if and only
if 2a ∈ U implies a ∈ V.

Embedding a modal algebra into the complex algebra of its canonical frame
is now straightforward. Recall that the function ηA : A → (A•)

+ such that
U ∈ ηA(a) if and only if a ∈ U for each prime filter U on A is an embedding of
distributive lattices.

Theorem 5.3 (Completeness) For every modal algebra A, A• is a modal
frame and ηA : A→ (A•)

+ is an embedding of modal algebras.

Proof. The convexity of RA follows from Corollary 5.2. It thus suffices to
prove that ηA preserves diamonds. It is clear that 3RA

ηA(a) ⊆ ηA(3a) by the
definition of RA. The opposite inclusion is precisely Lemma 5.1. 2

Lemma 5.1 also shows that the assignment (−)• in fact extends to a functor
(−)• : ModDLat→ ModPos. Recall that for any homomorphism of distributive
lattices h : A→ B, we define the monotone function h• : B• → A• as h−1.

Proposition 5.4 If h : A → B is a homomorphism of modal algebras, then
h• : B• → A• is a p-morphism of modal frames.

Proof. We only verify that UR⊇BV implies h•(U)R⊇Ah•(V) and that h•(U)R⊇AV ′

implies UR⊇BV for some prime filter V on B such that h•(V) ⊇ V ′.
Suppose that UBRBVB. If a ∈ h−1[VB], then h(a) ∈ VB, 3h(a) = h(3a) ∈

UB, 3a ∈ h−1[UB] and dually for 2. Therefore h−1[UB]RAh
−1[VB].

Now suppose that h−1[UB]R⊇AVA. Then 3VA ⊆ h−1[UB], hence 3h[VA] ⊆
h[3VA] ⊆ UB. By Lemma 5.1, there is a prime filter WB ⊇ h[VA] such that

UBR⊇BWB. Clearly h−1[WB] ⊇ VA for any such WB. 2

Theorem 5.3 and Proposition 5.4 extend to (bi-)Heyting modal algebras and
(bi-)Heyting p-morphisms: if A and B are (bi-)Heyting algebras and h : A→ B
is a homomorphism of (bi-)Heyting algebras, then ηA is in fact an embedding
of (bi-)Heyting algebras and h• is a (bi-)Heyting morphism of posets.
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6 Relationship with distributive modal logic

As a corollary to the completeness theorem, we can show that the class of all
frames for DML such that R3 and R2 are generated by the same relation is not
definable by (bi-Heyting) modal quasiequations. Recall that a frame for DML
was introduced by Gehrke et al. [8] as a poset (W,≤) equipped with a pair of
accessibility relationsR3 andR2 such that≥◦R3◦≥ ⊆ R3 and≤◦R2◦≤. 3 The
box (diamond) operator of DML is defined in terms of R2 (R3) precisely as
in classical modal logic. We say that R3 and R2 are generated by the same
underlying relation if and only if (R3 ∩R2)↑ = R3 and (R2 ∩R3)↓ = R2.

Proposition 6.1 The positive modal law 3b ≤ 2a ∨ c ⇒ 3b ≤ 3(a ∧ b) ∨ c
holds in a frame for DML if and only if for each uR3v there are u′ ≤ u and
v′ ≥ v such that uR3v

′, u′R3v and u′R2v
′.

Proof. We only show the harder (left-to-right) direction. Suppose that uR3v
but there are no u′ ≤ u and v′ ≥ v such that u′R3v, uR3v

′ and u′R2v
′. Then

let w ∈ b if and only if w ≥ v, let w ∈ a if and only if there is some u′ ≤ u
such that u′R3v and u′R2w, and let w /∈ c if and only if w ≤ u. It follows that
3b ≤ 2a ∨ c, but u ∈ 3b, u /∈ 3(a ∧ b) and u /∈ c. 2

Proposition 6.2 There is no set of (bi-Heyting) modal quasiequations Σ such
that Σ holds in a frame for DML if and only if R3 and R2 are generated by
the same underlying relation.

Proof. By Theorem 5.3, any such Σ is a quasiequational consequence of the
axioms of modal algebras. It therefore suffices to build a frame for DML where
R3 and R2 are not generated by the same underlying relation but which satis-
fies the relational conditions of Proposition 6.1 and its dual. This can be done
in a brute-force way.

Let F = F0 be any frame for DML which at least contains some pair
of points connected by some accessibility relation. Let Fi+1 be the frame
obtained from Fi by adding for each uR3v a pair of points u′, v′ which satisfy
exactly the condition of Proposition 6.1 and dually for each uR2v. Finally,
let Fω =

⋃
i∈ω Fi. The frame Fω satisfies the condition of Proposition 6.1

by construction and it is easy to see that u(R3 ∩ R2)v in Fω if and only if
u(R3∩R2)v already in F . The relations R3 and R2 on Fω are therefore never
generated by the same underlying relation. 2

7 Modal locality conditions

We have obtained a completeness via canonicity theorem for the logic of modal
frames with arbitrary (without loss of generality convex) relations. Let us now
investigate what happens when we impose some conditions relating ≤ and R.

3 They in fact use the opposite order convention, that is, ≤ ◦R3 ◦ ≤ ⊆ R3.
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In particular, we consider the following conditions:

≥ ◦R ⊆ R ◦ ≥
R ◦ ≤ ⊆ ≤ ◦R
≤ ◦R ⊆ R ◦ ≤
R ◦ ≥ ⊆ ≥ ◦R

The first two of these are exactly the conditions that IML imposes on R,
while PML requires the first and third conditions. The following observation
made already by Gehrke et al. [8] justifies calling them locality conditions.

Proposition 7.1 A frame satisfies the condition ≥ ◦ R ⊆ R ◦ ≥ if and only
if 3R(A) = {u ∈ W | uRv for some v ∈ A}. A frame satisfies the condition
≤ ◦R ⊆ R ◦ ≤ if and only if 2R(A) = {u ∈W | uRv implies v ∈ A}.

The other two conditions can be seen as locality conditions for the backward-
looking box and diamond operators which we are not considered in this paper.

In the present framework, these classes of modal frames can be axiomatized
by canonical modal equations. The completeness and duality theorems proved
here therefore generalize known completeness and duality theorems established
for IML by Fischer-Servi [6] and Palmigiano [9] and for PML by Dunn [5] and
Celani and Jansana [3].

In the propositions below, we use the notation F � ≥ ◦R ⊆ R ◦ ≥ to mean
that the inclusion holds in F .

Proposition 7.2 F � ≥ ◦R ⊆ R ◦ ≥ if and only if F+ � 2a∧3b ≤ 3(a∧ b).
Proof. If u ≥ vRw but uRx implies x � w, let y ∈ A if and only if uR↑y and
let y ∈ B if and only if y ≥ w. Then u ∈ 2A and u ∈ 3B. If u ∈ 3(A ∩ B),
then there is some z ≥ w such that u(≥ ◦ R)z and u(≤ ◦ R ◦ ≤)z, hence uRz
by the convexity of R, contradicting the assumption that uRz implies z � w.

Vice versa, if u ∈ 2A and u ∈ 3B, then u(≥ ◦ R)v for some v ∈ B, hence
uRw ≥ v for some w. But then w ∈ A and w ∈ B, hence u ∈ 3(A ∩B). 2

Proposition 7.3 F � R◦≤ ⊆ ≤◦R if and only if F+ � 3a→ 2b ≤ 2(a→ b).

Proof. If uRv ≤ w but xRw implies x � u, let y ∈ A if and only if y ≥ w
and y ∈ B if and only if y � w. Clearly u /∈ 2(A → B). But if z ∈ 3A and
z /∈ 2B for some z ≥ u, then z(≥ ◦R ◦ ≥)w and z(≤ ◦R ◦ ≤)w, hence zRw by
the convexity of R, contradicting the assumption that zRw implies z � u.

Vice versa, if u /∈ 2(A→ B), then u(R ◦ ≤)v for some v ∈ A, v /∈ B, hence
u ≤ wRv for some w. But then w ∈ 3A, w /∈ 2B, hence u /∈ 3A→ 2B. 2

Dualizing these two propositions yields the following.

Proposition 7.4 F � ≤ ◦R ⊆ R ◦ ≤ if and only if F+ � 2(a∨ b) ≤ 2a∨3b.
Proposition 7.5 F � R◦≥ ⊆ ≥◦R if and only if F+ � 3(a b) ≤ 2a 3b.

To prove that the above equations are canonical, it now suffices to show that
if A satisfies the equation, A• satisfies the corresponding relational condition.
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Proposition 7.6 If A � 2a ∧3b ≤ 3(a ∧ b), then A• � ≥ ◦R ⊆ R ◦ ≥.

Proof. If U(≥◦R)V, then 3V ⊆ U . Extend V to a maximal filterW such that
3W ⊆ U . The filter W is prime and if a /∈ W, then 3(a ∧ w) /∈ U for some
w ∈ W. But then 3w ∈ U , hence 2a /∈ U because 2a ∧3w ≤ 3(a ∧ w). 2

Proposition 7.7 If A � 3a→ 2b ≤ 2(a→ b), then A• � R ◦ ≤ ⊆ ≤ ◦R.

Proof. If U(R ◦ ≤)V, then 2−1U ⊆ V. Extend U to a maximal filter W such
that 2−1W ⊆ V. The filter W is prime and if 3a /∈ W, then 3a ∧ w ≤ 2b for
some w ∈ W, b /∈ V, hence w ≤ 3a → 2b ≤ 2(a → b). But then a → b ∈ V,
hence a /∈ V. 2

Again, dually we obtain the following two propositions.

Proposition 7.8 If A � 2(a ∨ b) ≤ 2a ∨3b, then A• � ≤ ◦R ⊆ R ◦ ≤.

Proposition 7.9 If A � 3(a b) ≤ 2a 3b, then A• � R ◦ ≥ ⊆ ≥ ◦R.

Observe that the equation 2a ∧ 3b ≤ 3(a ∧ b) implies the positive modal
law and the equation 3a → 2b ≤ 2(a → b) implies the negative modal law.
We conjecture that the variety of modal algebras relatively axiomatized by
2a ∧ 3b ≤ 3(a ∧ b) and 2(a ∨ b) ≤ 2a ∧ 3b (that is, the variety of positive
modal algebras introduced by Dunn [5]) is in fact the largest variety of modal
algebras, and the variety relatively axiomatized by 2a ∧ 3b ≤ 3(a ∧ b) and
3a→ 2b ≤ 2(a ∨ b)→ 2b is the largest variety of Heyting modal algebras.

8 Duality for modal algebras

We now extend the completeness theorem for modal algebras to a duality based
on the Priestley duality for distributive lattices. In order to derive a Hennessy-
Milner theorem as a corollary, we in fact formulate a dual adjunction between
modal algebras and “compactly branching” modal spaces, which restricts to a
dual equivalence if we require the spaces to be compact.

The bitopological framework of Bezhanishvili et al. [1] will turn out to
be suitable for this purpose. Bezhanishvili et al. formulate a dual equivalence
between the category of distributive lattices (Heyting, bi-Heyting algebras) and
suitable categories of spaces equipped with a pair of topologies. We slightly
diverge from their framework in two ways. Firstly, we take the partial order ≤
to be part of the signature of such spaces, even though it is uniquely determined
by the topologies. We therefore call them Priestley spaces rather than Stone
spaces. Secondly, we generalize this dual equivalence to a dual adjunction.
This involves no substantial novelty, only checking that the proof of the dual
adjunction goes through without the assumption of compactness.

Definition 8.1 A bitopological poset X = (W,≤, τ±) is a poset (W,≤) such
that the upspace (W, τ+) is a topological space, the downspace (W, τ−) is a
topological space, each U ∈ τ+ is an upset of (W,≤), and each U ∈ τ− is a
downset of (W,≤). The opposite of X is the bitopological poset X op = (W,≥
, τ∓). A bicontinuous function f : (U,≤, τ±) → (V,v, υ±) both a continuous
function f : (U, τ+)→ (V, υ+) and a continuous function f : (U, τ−)→ (V, υ−).
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Let X = (W,≤, τ±) be a bitopological poset. The join topology of X is the
topology τ = τ+ ∨ τ−. A subset of X is upopen, upclosed or upcompact if it is
open, closed or compact in the uptopology τ+, and it is downopen, downclosed
or downcompact if it is open, closed or compact in the downtopology τ−. A
set is upclopen (downclopen) if it is upopen and downclosed (downopen and
upclosed). An upbasis (downbasis) is a basis for the upspace (downspace).

A convex subset U of X is closed if U↑ is downclosed and U↓ is upclosed.
The bitopological poset X is compact if it is compact in the join topology, or
equivalently if and only if each cover of X by elements from τ+ ∪ τ− has a
finite subcover. It is Hausdorff if the diagonal relation ∆W is a closed subset
of X op × X . It is a pre-Priestley space if it is Hausdorff, has an upbasis of
upclopens, and has a downbasis of downclopens. It is a Priestley space if it is a
compact pre-Priestley space. The category of pre-Priestley (Priestley) spaces
and bicontinuous monotone functions will be denoted PrePries (Pries).

We now set up a dual adjunction between PrePries and DLat. Given a pre-
Priestley space X , let X ∗ be the distributive lattice of all upclopen subsets of
X , and given a bicontinuous monotone function f : X → Y, let f+ be the
homomorphism of distributive lattices f−1 : V + → U+.

Let η+A(a) = ηA(a) be the set of all prime filters U on A such that a ∈ U
and let η−A(a) be the set of all prime filters U on A such that a /∈ U . Given a
distributive lattice A, let A∗ be the poset of prime filters A• equipped with the
uptopology generated by η+A(a) for a ∈ A and with the downtopology generated
by η−A(a) for a ∈ A. Given a homomorphism of modal algebras h : A→ B, let
h∗ be the function h−1 : B∗ → A∗.

It remains to define the co-unit of the dual adjunction. Given any pre-
Priestley space X , we define the function εX : X → (X ∗)∗ such that U ∈ εX (u)
if and only if u ∈ U for each upclopen subset U of X .

Theorem 8.2 (Bitopological Priestley dual adjunction) (−)∗ a (−)∗ :
PrePriesop → DLat is an adjunction with unit η and co-unit ε which restricts
to an equivalence between Priesop and DLat.

Proof. We know from [1] that restricting to Priestley spaces yields a dual
equivalence. What we need to prove is that the assignment (−)∗ defines a
functor (−)∗ : PrePriesop → DLat, that εX : X → (X ∗)∗ is a bicontinuous
monotone function for any pre-Priestley space X , and that the triangle equality
(εX )∗ ◦ ηX∗ = 1X∗ holds. The first claim is straightforward to prove.

To prove the second claim, we know that (X ∗)∗ has an upbasis of upclopen
sets and that each upclopen subset V of (X ∗)∗ consists of all prime filters of
upclopens on X which contain some upclopen subset U of X . It then follows
that u ∈ U if and only if εX (u) ∈ V .

To prove the third claim, ηX∗ sends an upclopen subset U of X to the set
V of all prime filters of upclopens on X which contain U . But εX sends a point
u ∈ X to a filter which contains U if and only if u ∈ U , hence the pre-image of
V under εX is precisely U . 2

We now extend this dual adjunction to modal algebras. A convex relation
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R on a bitopological poset X is said to be continuous if (R↓)−1[U ] is upopen
for U upopen and (R↑)−1[U ] is downopen for U downopen. It is compact if
R↓[u] is downcompact and R↑[u] is upcompact for each u ∈ X .

Definition 8.3 A pre-modal space X = (W,≤, R, τ±) is both a modal frame
(W,≤, R) and a pre-Priestley space (W,≤, τ±) such that R is closed, (R↓)−1[U ]
is upclopen for U upclopen, and (R↑)−1[U ] is downclopen for U downclopen. A
modally compact space is a pre-modal space such that R is compact. A modal
space is a compact pre-modal space.

Modal frames can be viewed as modal spaces with a discrete bitopology,
that is, the uptopology of all upsets and the downtopology of all downsets.
Modally compact frames are then frames such that for each point u, R↓[u] is
the lower closure of a finite set and R↑[u] is the upper closure of a finite set.
It is easily seen that each modal space is a modally compact space. (Since the
relation R is closed, R↓[u] is downclosed, hence also compact, for each u.)

We define the complex algebra X ∗ of a pre-modal space X as the expansion
of the complex algebra of the underlying pre-Priestley space by the operations
2R and 3R. The set of all upclopens on a pre-modal space is closed under
these operations. The functions ηA and εX are defined for modal algebras and
pre-modal spaces as for distributive lattices and pre-Priestley spaces.

Proposition 8.4 If X is a modally compact space, then the function εX :
X → (X ∗)∗ is a bicontinuous p-embedding of modally compact spaces.

Proof. Let X = (W,≤, τ±, R). We know that εX is a bicontinuous monotone
embedding of pre-Priestley spaces. Corollary 5.2 implies that if uR↓v, then
εX (u)R⊇X∗εX (v). Vice versa, suppose that εX (u)R⊇X∗V. The inclusion 3V ⊆
εX (u) holds by Corollary 5.2, hence each upclopen set in V intersects with
R↓[u]. By the downcompactness of R↓[u], so does their intersection. There is
therefore some v ∈ R↓[u] such that εX (v) ⊇ V. 2

We denote the category of modally compact spaces and their bicontinu-
ous p-morphisms by ModKSpace and the full subcategory of modal spaces by
ModSpace. Using Proposition 8.4, we obtain the following duality theorem.

Theorem 8.5 (−)∗ a (−)∗ : ModKSpaceop → ModDLat is a dual adjunction
with unit η and co-unit ε which restricts to a dual equivalence between ModSpace
and ModDLat.

Proof. Given Theorem 8.2, it suffices to show that η is preserves 2 and 3 and
that ε is a morphism in ModKSpace. Theorem 5.3 proves the former claim and
Proposition 8.4 proves the latter claim. 2

We now derive a Hennessy-Milner theorem as a corollary. See [2] for a proof
of the Hennessy-Milner theorem for classical modal logic.

Definition 8.6 A modal model over a set of atomic propositions Prop consists
of a pre-modal space X and a valuation function valX : Prop→ X ∗. A modally
compact model is a modal model such that X is a modally compact space.
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A bisimulation between modal models (X , valX ) and (Y, valY) is a bisimu-
lation σ between X and Y such that uσv implies that u ∈ valX (p) if and only
if v ∈ valX (p) for all p ∈ Prop.

The valuation function extends to a unique homomorphism hX : F(Prop)→
X ∗, where F(Prop) is the free bi-Heyting modal algebra generated by Prop.
Given a pair of modal models (X , valX ) and (Y, valY) and a pair of points u ∈
X , v ∈ Y, define uσX ,Yv to hold in case u ∈ hX (a) if and only if v ∈ hX (a) for
all a ∈ F(Prop). In other words, uσX ,Y if and only if h−1X [εX (u)] = h−1Y [εY(v)].

Theorem 8.7 (Hennessy-Milner theorem) Let (X , valX ) and (Y, valY) be
modally compact models. Then σX ,Y is the largest bisimulation between these
models.

Proof. By Proposition 8.4, (hX )∗ ◦ εX (u) and (hY)∗ ◦ εY(v) are p-morphisms.
By Proposition 3.7, σ is thus a bisimulation, and clearly the largest one. 2

9 Conclusion

We have introduced distributive unimodal logic as a semantically motivated
generalization of classical set-based modal logic to a poset-based setting. We
defined a suitable quasivariety of modal algebras and proved a completeness
theorem embedding each modal algebra in the complex algebra its canonical
frame. We then discussed the relationship between distributive unimodal logic
and the distributive modal logic of Gehrke et al. [8] and showed that the
existing completeness and duality theorems for intuitionistic modal logic and
positive modal logic are subsumed by the completeness and duality theorems for
distributive unimodal logic. Finally, the completeness theorem was extended
to a duality between the category of modal algebras and a cat/egory of suitably
topologized modal frames and a Hennessy-Milner theorem for bi-intuitionistic
unimodal logic was proved as a corollary.

The completeness and duality theorems proved here can in fact be extended
to the full language of distributive modal logic (which includes modal operators
corresponding to the classical modalities 2¬ and 3¬). Extending them to
modalities of higher arity, however, seems to be substantially more difficult.

Apart from other standard areas of investigation which were left untouched
(such the finite model property, decidability and correspondence theory), we
can also pose a question which does not arise in any of the other modal logics
considered here, namely: given some choice of connectives, is there a largest
variety of modal algebras in this language? In other words, is there a most
general equational condition in a given language which ensures the validity of
the quasiequations defining the class of modal algebras? It seems natural to
conjecture that the positive modal algebras introduced by Dunn in fact form
the largest variety of modal algebras.
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