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Abstract

A formula is contingent if it is possibly true and possibly false. A formula is non-
contingent if it is not contingent, i.e., if it is necessarily true or necessarily false. In
an epistemic setting, ‘a formula is contingent’ means that you are ignorant about its
value, whereas ‘a formula is non-contingent’ means that you know whether it is true.
Although non-contingency is definable in terms of necessity as above, necessity is not
always definable in terms of non-contingency, as studied in the literature. We propose
an ‘almost-definability’ schema AD for non-contingency logic, the logic with the non-
contingency operator as the only modality, making precise when necessity is definable
with non-contingency. Based on AD we propose a notion of bisimulation for non-
contingency logic, and characterize non-contingency logic as the (non-contingency)
bisimulation invariant fragment of modal logic and of first-order logic. A known pain
for non-contingency logic is the absence of axioms characterizing frame properties.
This makes it harder to find axiomatizations of non-contingency logic over given frame
classes. In particular, no axiomatization over symmetric frames is known, despite the
rich results about non-contingency logic obtained in the literature since the 1960s.
We demonstrate that the ‘almost-definability’ schema AD can guide our search for
proper axioms for certain frame properties, and help us in defining the canonical
models. Following this idea, as the main result, we give a complete axiomatization of
non-contingency logic over symmetric frames.
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1 Introduction

Contingency is an important concept in philosophical logic; the notion goes
back to Aristotle [2]. In [10], Montgomery and Routley define contingency in
modal logic. A proposition ϕ is non-contingent, if it is necessary that ϕ or it
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is necessary that ¬ϕ. Otherwise, it is contingent. For ‘ϕ is non-contingent’ we
write ∆ϕ and for ‘ϕ is contingent’ we write ∇ϕ.

One theme is how to define necessity from non-contingency. Non-
contingency is definable in terms of necessity as above, i.e., as ∆ϕ =df

2ϕ ∨ 2¬ϕ. But necessity cannot always be defined with non-contingency. In
[10] it is proposed to define necessity as 2ϕ =df ∆ϕ∧ϕ. Intuitively, necessity is
non-contingent truth. However, this definition is only available in the systems
containing 2ϕ→ ϕ [13, page 128]. When else is necessity definable in terms of
non-contingency? In [3], it is shown that 2 can only be defined in terms of ∆
in the Verum system (i.e. the minimal modal logic extended with 2ϕ), or the
systems containing 2ϕ→ 3ϕ.

To provide the definability of 2 in the general case, researchers extend
the language with the introduction of extra operators. In [11], based on the
postulate that some proposition is contingent, the author uses propositional
quantifiers when defining necessity: 2ϕ =df ∀p(∆(p ∧ ϕ) → ∆p). This says
that a proposition is necessary if adding it cannot change the contingency of
any contingent proposition. In the subsequent papers such as [12] the author
introduces a propositional constant τ instead of propositional quantifiers to
define necessity based on the axiom ∇τ : ϕ is necessary, if it is non-contingent,
and it is non-contingently implied by τ , formally, 2ϕ =df ∆ϕ ∧ ∆(τ → ϕ).
In [17], inspired by the similarity between the definition of canonical relation
in the completeness proof for the minimal non-contingency logic and that for
the minimal modal logic, the author defines an infinitary operator in terms of
∆, and shows that this new operator behaves like, but differs from 2. Such
methods are compared in detail in [8]. In this paper we propose the ‘almost-
definability’ schema ∇ψ → (2ϕ ↔ ∆ϕ ∧ ∆(ψ → ϕ)): necessity is definable
by non-contingency on a world, when some contingent proposition holds on
that world. Note that we do not require ∇ψ to be valid. This schema also
guides our proposals for bisimulation for non-contingency logic, and to charac-
terize it within modal logic and within first-order logic using this new notion
of bisimulation.

Another theme is axiomatizing the logic with the non-contingency operator
as the only modality. A well-known difficulty is the absence of axioms charac-
terizing frame properties in this logic, which makes it highly non-trivial to find
axiomatizations of non-contingency logics over given frame classes. An unpub-
lished axiomatization for non-contingency-based S5 was proposed by Lemmon
and Gjertsen in 1959 [7, note 10]. The non-contingency logics over reflexive
frames and its extensions are axiomatized in [10]. In [6], Humberstone presents
an infinite axiomatization for non-contingency logic over arbitrary frames and
over serial frames. A finite axiomatization is given in [9]. This also provides
a finite axiomatization for transitive non-contingency logic. In [16], an axio-
matization for Euclidean non-contingency logic is proposed. However, to our
knowledge, the axiomatization for non-contingency logic over symmetric frames
is still open, due to technical difficulties. In this paper we solve this open prob-
lem by using the ‘almost-definability’ schema as a guiding clue.
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Non-contingency logic also arose in the area of epistemic logic but with dif-
ferent terminology: ‘ϕ is non-contingent’ there means ‘the agent knows whether
ϕ’, so that ‘ϕ is contingent’ means ‘the agent is ignorant about ϕ’. Apparently
unaware of the non-contingency logic literature, in [4] the author provides an
axiomatization on S5 frames. In [15] a logic of ignorance is presented and this
logic is axiomatized over arbitrary frames. In [14] a topological completeness
on the class of S4 models is shown for the logic of ignorance. In [5], knowing
whether logic is axiomatized over transitive frames and other frame classes (ex-
cept symmetric frames), employing other than the traditional methods in the
non-contingency literature. A novel result in [5] is the extension of knowing
whether logic with public announcements, and its axiomatization.

As the main technical contributions of this work, we characterize the
non-contingency logic within modal logic and within first-order logic using
a novel notion of bisimulation, and give a complete axiomatization of non-
contingency logic over symmetric frames. Both results are inspired by the
almost-definability schema.

In Section 2 we define non-contingency logic and the almost-definability
schema. In Section 3 we propose a notion of bisimulation on Kripke models
that is suitable for non-contingency logic (called ∆-bisimulation), and also a
suitable notion of bisimulation contraction. These are non-trivially different
from standard bisimulation and contraction. In Section 4 we then characterize
non-contingency logic as the ∆-bisimulation invariant fragment of modal logic
and of first-order logic. Section 5 axiomatizes non-contingency logic over the
class of symmetric frames. We conclude with some discussions in Section 6.

2 Non-contingency logic and almost-definability

Let us first recall the language and semantics of non-contingency logic as a
fragment of the following logical language with both the necessity operator
and the non-contingency operator:

Definition 2.1 (Logical languages NCL2, NCL and ML) Given a set
P of propositional variables, the logical language NCL2 is defined as:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ∆ϕ | 2ϕ

where p ∈ P. Without the 2ϕ construct, we have the language NCL of non-
contingency logic. Without the ∆ϕ construct, we have the language ML of
modal logic. If ϕ ∈ NCL, then we say ϕ is an NCL-formula, Similarly we
say ϕ is an ML-formula for ϕ ∈ML.

In the rest of the paper, we will be mostly focusing on NCL which has ∆
as the only primitive modality.

The formula 2ϕ says ‘it is necessary that ϕ’ and ∆ϕ expresses ‘it is non-
contingent that ϕ’. 4 As usual, we define ⊥, (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ),

4 In [6], Humberstone suggested to rephrase it as ‘it is non-contingent whether ϕ’ to avoid
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∇ϕ and 3ϕ as the abbreviations of, respectively, ¬>, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ),
((ϕ → ψ) ∧ (ψ → ϕ)), ¬∆ϕ and ¬2¬ϕ. We omit parentheses from formulas
unless confusion. Note that ∇ϕ is not the dual but the negation of ∆ϕ, which
expresses ‘it is contingent that ϕ’.

Definition 2.2 (Model) A model is a tripleM = 〈S,R, V 〉 where S is a non-
empty set of possible worlds, R is a binary relation over S, and V is a valuation
function assigning a set of worlds V (p) ⊆ S to each p ∈ P. Given a world
s ∈ S, the pair (M, s) is a pointed model. We will omit parentheses around
pointed models (M, s) whenever convenient. A frame is a pair F = 〈S,R〉, i.e.
a model without a valuation.

Definition 2.3 (Semantics) Given a modelM = 〈S,R, V 〉, the semantics of
NCL2 is defined as follows:

M, s � > ⇔ true
M, s � p ⇔ s ∈ V (p)
M, s � ¬ϕ ⇔ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ
M, s � ∆ϕ ⇔ for any t1, t2 such that sRt1, sRt2 :

(M, t1 � ϕ⇔M, t2 � ϕ)
M, s � 2ϕ ⇔ for all t such that sRt :M, t � ϕ

If M, s � ϕ we say that ϕ is true in (M, s), and sometimes write s � ϕ if
M is clear; if for all s in M we have M, s � ϕ we say that ϕ is valid on
M and write M � ϕ; if for all M based on F with M � ϕ we say that ϕ
is valid on F and write F � ϕ; if for all F with F � ϕ, ϕ is valid and we
write � ϕ. If there exists an (M, s) such that M, s � ϕ, then ϕ is satisfiable.
Given any two pointed models (M, s) and (N , t), we say they are ∆-equivalent,
notation: (M, s) ≡∆ (N , t), if they satisfy the same NCL-formulas; we say
they are 2-equivalent, notation: (M, s) ≡2 (N , t), if they satisfy the same
ML-formulas.

We are now ready to propose the almost-definability of the necessity oper-
ator.

Definition 2.4 Let ϕ,ψ ∈ NCL. Almost-definability is the schema
∇ψ → (2ϕ↔ ∆ϕ ∧∆(ψ → ϕ)) for which we write AD.

Proposition 2.5 Almost-definability AD is a validity of NCL2. 5

Proof Given any pointed model (M, s), suppose that M, s � ∇ψ. We need
to show M, s � 2ϕ↔ ∆ϕ ∧∆(ψ → ϕ).

First, assume that M, s � 2ϕ. It follows that for all t such that sRt, we
have t � ϕ (thus t � ψ → ϕ). Then M, s � ∆ϕ and M, s � ∆(ψ → ϕ), and
thus M, s � ∆ϕ ∧∆(ψ → ϕ).

ambiguity. Here we follow the traditional reading of ∆ϕ in the literature.
5 From Proposition 2.5 it follows “� ∇ψ implies � 2ϕ↔ (∆ϕ∧∆(ψ → ϕ))”. This validates
Pizzi’s definition of 2ϕ using the new proposition constant τ (let ψ be that τ , see the
Introduction). But note that there are no ψ for which ∇ψ is valid.



182 Almost Necessary

Next, assume that M, s � ∆ϕ ∧ ∆(ψ → ϕ). From the supposition that
M, s � ∇ψ, it follows that there exist t1 and t2 such that sRt1 and sRt2 and
t1 � ψ and t2 � ¬ψ. By t2 � ¬ψ, it is clear that t2 � ψ → ϕ. Then using
the fact that s � ∆(ψ → ϕ), sRt1 and sRt2, we obtain that t1 � ψ → ϕ, thus
t1 � ϕ. Since s � ∆ϕ, we have u � ϕ for each u inM such that sRu. Therefore
s � 2ϕ. 2

With the almost-definability schema, we are able to find the proper notions
of bisimulation and of bisimulation contraction for non-contingency logic, as
shown in the next section. Also, almost-definability can guide us to search
for proper axioms for certain frame properties, and help us in defining the
canonical models. This will be seen more clearly in Section 5.

3 Bisimulation

The standard notion of bisimulation (2-bisimulation) is too refined for non-
contingency logic. In this section we propose a suitable weaker notion of ∆-
bisimulation.

Definition 3.1 (2-Bisimulation) Let M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉
be two models. A binary relation Z is a 2-bisimulation between M and M′, if
Z is non-empty and whenever sZs′:

(Invariance) s and s′ satisfy the same propositional variables;
(2-Zig) if sRt, then there is a t′ in M′ such that s′R′t′ and tZt′;
(2-Zag) if s′R′t′, then there is a t in M such that sRt and tZt′.

We say that (M, s) and (M′, s′) are 2-bisimilar, if there is a 2-bisimulation
linking two states s in M and s′ in M′, and we write (M, s) ↔2 (M′, s′).

Example 3.2 The models (M, s) and (M′, s′) below satisfy the same NCL-
formulas but they are not 2-bisimilar.

M : s : p // t : p M′ : s′ : p // t′ : ¬p

Inspired by the almost-definability schema, we can obtain the notion of ∆-
bisimulation by revising the 2-Zig and 2-Zag conditions in the definition of 2-
bisimulation. Recall that almost-definability says 2 is definable in terms of ∆,
given a condition ∇ψ for some ψ. This condition corresponds to a precondition
that the current world can see two non-NCL-equivalent successors. Note that
for technical convenience, we define ∆-bisimulation within a single model, since
the new Zig and Zag conditions require a precondition about ‘sibling’ worlds, i.e.
the structural counterpart of non-NCL-equivalency. Based on ∆-bisimulation
we can define ∆-bisimilarity between different models.

Definition 3.3 (∆-Bisimulation) Let M = 〈S,R, V 〉 be a model. A binary
relation Z over S is a ∆-bisimulation on M, if Z is non-empty and whenever
sZs′:

(Invariance) s and s′ satisfy the same propositional variables;
(∆-Zig) if there are two successors t1, t2 of s such that (t1, t2) /∈ Z and sRt

for some t, then there is a t′ such that s′Rt′ and tZt′;
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(∆-Zag) if there are two successors t′1, t
′
2 of s′ such that (t′1, t

′
2) /∈ Z and

s′Rt′ for some t′, then there is a t such that sRt and tZt′.
We say (M, s) and (M′, s′) are ∆-bisimilar, notation: (M, s) ↔∆ (M′, s′),

if there is a ∆-bisimulation linking s and s′ in the disjoint union of M and
M′.

We observe (without proof) that the notion of ∆-bisimilarity is an equival-
ence relation.

The following result indicates the relationship between the notion of ∆-
bisimilarity and that of 2-bisimilarity: ∆-bisimilarity is strictly weaker than
that of 2-bisimilarity. This corresponds to the fact that non-contingency logic
is strictly weaker than modal logic.

Proposition 3.4 (M, s) ↔2 (N , t) implies (M, s) ↔∆ (N , t) for any pointed
models (M, s) and (N , t), but the converse is not true.

Proof (Sketch) Collect all the 2-bisimilar pairs (s, t) with s in M and t in
N to construct a relation Z. We can check that Z is a ∆-bisimulation on
the disjoint union of M and N . For the converse, Example 3.2 yields two
∆-bisimilar but not 2-bisimilar pointed models (M, s) and (M′, s′). 2

The following result says that NCL-formulas are invariant under ∆-
bisimilarity.

Proposition 3.5 Let M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉. Then, for every
s ∈ S and s′ ∈ S′, if (M, s) ↔∆ (M′, s′), then (M, s) ≡∆ (M′, s′). In other
words, ∆-bisimilarity implies ∆-equivalence.

Proof Assume that (M, s) ↔∆ (M′, s′). We need to show that for any ϕ ∈
NCL, we have M, s � ϕ iff M′, s′ � ϕ.

By induction on ϕ. The non-trivial case is ∆ϕ.
SupposeM, s 2 ∆ϕ. Then there exist t1, t2 such that sRt1, sRt2 and t1 � ϕ

and t2 2 ϕ. As (M, s) ↔∆ (M′, s′), there exists a ∆-bisimulation Z linking
s and s′. By the fact that t1 � ϕ and t2 2 ϕ and the induction hypothesis,
(t1, t2) /∈ Z. From sRt1 we obtain by (∆-Zig) that there exists t′1 such that
s′R′t′1 and t1Zt

′
1, thus (M, t1)↔∆ (M′, t′1). Similarly, from sRt2 we have that

there exists t′2 such that s′R′t′2 and (M, t2) ↔∆ (M′, t′2). From t1 ↔∆ t′1 and
t1 � ϕ, by the induction hypothesis, t′1 � ϕ. Analogously, we can get t′2 2 ϕ.
Therefore M′, s′ 2 ∆ϕ. For the other direction use (∆-Zag).

2

The notion of ∆-bisimulation has many applications. First, it can be used
to show that some properties of models definable in ML cannot be defined in
NCL; second, it can show undefinability for usual frame properties; moreover,
it can help to show that NCL is less expressive than ML on symmetric (and
many other) models. For the definitions of expressivity and definability, we
refer the reader to, e.g. [1].

Proposition 3.6 The property “is an endpoint” is undefinable in NCL, while
it can be defined in ML.
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Proof The property “is an endpoint” is defined by 2⊥.
For the other part, consider pointed models (M, s) and (N , t), where s is

an endpoint, t has only one successor, and s, t agree on proposition variables.
If the property in question were defined by a set of NCL-formulas, say Φ.
Since s is an endpoint, we have M, s � Φ. Moreover, (M, s) ↔∆ (N , t). By
Proposition 3.5 we obtain N , t � Φ, thus t is an endpoint, contradiction. 2

The undefinability results below were presented in the literature ([6,16,5]).
With ∆-bisimulation, we can give them simpler proofs.

Proposition 3.7 The frame properties of seriality, reflexivity, transitivity,
symmetry, and Euclidicity are not definable in NCL.

Proof Consider the following frames:

F1 : s1
// t // u F2 : s2

��

We first show that, for any ϕ ∈ NCL, F1 |= ϕ iff F2 |= ϕ. Fix a ϕ. If
F1 2 ϕ, then there existsM1 = 〈F1, V1〉 and s inM1 such thatM1, s 2 ϕ. Let
V2 be a valuation based on F2 such that p ∈ V2(s2) iff p ∈ V1(s) for all p ∈ P.
By definition of ∆-bisimilarity, (M1, s) ↔∆ (M2, s2) where M2 = 〈F2, V2〉.
From Proposition 3.5 follows that M2, s2 2 ϕ, thus F2 2 ϕ. The converse is
similar.

If seriality were to be defined by a set of NCL-formulas, say Γ, then since
F2 is serial, we have F2 � Γ. Then we should also have F1 � Γ, i.e., F1 should
also be serial, contradiction. The proof for other properties are similar. 2

Proposition 3.8 was also shown in [5]. With ∆-bisimulation, we get a simpler
proof.

Proposition 3.8 NCL is less expressive than ML on the class of symmetric
models.

Proof Since ∆ϕ =df 2ϕ ∨ 2¬ϕ, ML is at least as expressive as NCL. Con-
sider the following symmetric models which can be distinguished by 2p:

s : p // poo t : p //¬poo

(M, s) (N , t)

However, by definition of ∆-bisimilarity, (M, s) ↔∆ (N , t). Due to Pro-
position 3.5, (M, s) ≡∆ (N , t), thus no NCL-formulas can distinguish the
two. 2

A model M is said to be NCL-saturated, if given any s in M, and any set
Σ ⊆ NCL, if every finite subset of Σ is satisfiable in the set of successors of
s, then Σ is satisfiable in the set of successors of s. In what follows, we show
that ≡∆ and ↔∆ coincide on NCL-saturated models. The proof is similar to
its modal counterpart but it makes a crucial use of the NCL-formulas.
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Proposition 3.9 For any NCL-saturated pointed models (M, s) and (N , t),
(M, s) ≡∆ (N , t) iff (M, s) ↔∆ (N , t).

Proof Based on Proposition 3.5, we only need to show the direction from left
to right. Let M = 〈S,R, V 〉 and N = 〈S′, R′, V ′〉 be two NCL-saturated
models. Suppose (M, s) ≡∆ (N , t), we need to show ≡∆ is a ∆-bisimulation
on the disjoint union of M and N , which entails (M, s)↔∆ (N , t). It suffices
to show the condition (∆-Zig) holds, as the proof for (∆-Zag) is similar.

For this, assume that there exist s1, s2 such that sRs1, sRs2 and s1 6≡∆ s2,
and assume sRs′, to show there exists t′ such that tR′t′ and s′ ≡∆ t′. Let
Σ = {ψ ∈ NCL | s′ � ψ}. Clearly, s′ � Σ. Then for any finite Γ ⊆ Σ, s′ �

∧
Γ.

If for all t′ such that tR′t′, t′ 2
∧

Γ, then t � ∆
∧

Γ, and by supposition we
derive s � ∆

∧
Γ. In the meantime, as s1 6≡∆ s2, there exists ϕ ∈ NCL such

that s1 � ϕ and s2 2 ϕ. Then by the fact that s′ �
∧

Γ and s � ∆
∧

Γ, it is
not hard to get s1 �

∧
Γ → ϕ and s2 2

∧
Γ → ϕ, and thus s 2 ∆(

∧
Γ → ϕ).

On the other hand, since for every t′ such that tR′t′ it holds that t′ 2
∧

Γ, we
have that t′ �

∧
Γ → ϕ, and thus t � ∆(

∧
Γ → ϕ), contradicting to s ≡∆ t

and s 2 ∆(
∧

Γ → ϕ). Hence there exists tΓ such that tR′tΓ and tΓ �
∧

Γ.
By NCL-saturation, there exists t′ with tR′t′ and t′ � Σ. Moreover, s′ ≡∆ t′:
given any ψ ∈ NCL, if s′ � ψ, then ψ ∈ Σ, and thus t′ � ψ; if s′ 2 ψ, then
s′ � ¬ψ, and thus ¬ψ ∈ Σ, and hence t′ � ¬ψ, i.e., t′ 2 ψ. 2

If we remove the condition of NCL-saturation, then ↔∆ does not coincide
with ≡∆, as illustrated below.

Example 3.10 Consider two models M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉,
where S = N ∪ {s}, R = {(s, n) | n ∈ N}, V (pn) = {n} and S′ = N ∪ {s′, ω},
R′ = {(s′, n) | n ∈ N} ∪ {(s′, ω)}, and V ′(pn) = {n}. In pictures:

s

��   (( **

M

p1 p2 p3 . . .

s′

��   (( **

// ω M′

p1 p2 p3 . . .

Now M is not NCL-saturated. We can also check that (M, s) ≡∆ (M′, s′)
but (M, s) is not ∆-bisimilar to (M′, s′).

Bisimulation contraction The 2-bisimulation contraction is defined as a
quotient model modulo 2-bisimilarity (as the equivalence relation) such that
one equivalence class is accessible from another equivalence class if a world in
the first is accessible from a world in the second. However, if we just replace 2-
bisimilarity with ∆-bisimilarity in this definition, the contracted model may not
be ∆-bisimilar to the original one, as the following example shows. Therefore
we propose a novel notion of ∆-bisimulation contraction, which features an
extra condition in the definition of the quotient relation.

Example 3.11 Model M′ is the ‘∆-bisimulation contraction’ of M if we just
replace 2-bisimilarity with ∆-bisimilarity as above, but (M′, [s1]) is not ∆-
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bisimilar to (M, s1): for example, ∆p is true in (M, s1) but false in (M′, [s1]).

t : p u : ¬p [u] : ¬p [u] : ¬p

s1 : p

OO

s2 : p

OO

[s1] : pXX

OO

[s1] : p

M M′ [M]

To overcome the above problem, we propose a novel notion of ∆-
bisimulation contraction. In particular, we would like to have [M] as the
contracted model of M in the above example.

Definition 3.12 (∆-Bisimulation Contraction) Given a model M =
〈S,R, V 〉, recall that ∆-bisimilarity (↔∆) within M is an equivalence relation.
Let [s] be the equivalence class of s w.r.t. ↔∆ within M. The ∆-bisimulation
contraction of M is the quotient structure [M] = 〈[S], [R], [V ]〉, where

• [S] = {[s] | s ∈ S};
• [s][R][t] iff there exist s′ ∈ [s] and t′ ∈ [t] such that s′Rt′ and there exist t1, t2

such that s′Rt1 and s′Rt2 and t1 6↔∆ t2;

• For all propositional variables p, [V ](p) = {[s] | s ∈ V (p)}.
According to the above definition, we do get [M] in the earlier example.

We show that the contracted model is ∆-bisimilar to the original model.

Proposition 3.13 LetM = 〈S,R, V 〉 and [M] be the ∆-bisimulation contrac-
tion of M. Then for all s ∈ S, we have ([M], [s]) ↔∆ (M, s).

Proof Define

Z = {([s], s) | s ∈ S} ∪ {(t, t′) | t ∈ S, t′ ∈ S and t↔∆ t′}.

We show Z is a ∆-bisimulation on the disjoint union of [M] and M, which
implies that ([M], [s]) ↔∆ (M, s). First of all, Z is clearly non-empty due to
the fact that S is non-empty.

• Invariance: by the definition of [V ].

• ∆-Zig: We prove a stronger version (2-Zig in fact) that for any u, v ∈ [S], if
u[R]v and uZs (i.e. s ∈ u) then there exists t ∈ S such that vZt (i.e. t ∈ v)
and sRt. Now suppose u[R]v and uZs, then according to the definition of
[R] there is an s′ ∈ u and a t′ ∈ v such that s′Rt′ and there are t1 and t2
such that s′Rt1 and s′Rt2 and t1 6↔∆ t2. Since s ∈ u and s′ ∈ u, s ↔∆ s′.
Note that ↔∆ is also a ∆-bisimulation, 6 thus since s′Rt′ there is a t such
that sRt and t↔∆ t′ thus t ∈ v.

• ∆-Zag: Suppose that sRt and there exist two R-successors t1, t2 of s such
that (t1, t2) 6∈ Z. By the definition of Z, we have t1 6↔∆ t2, thus [s][R][t] by

6 In fact, ↔∆ is the largest ∆-bisimulation.
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the definition of [R]. Now since t ∈ [t], we have [t]Zt. We have thus proved
that there exists [t] ∈ [S] such that [s][R][t] and [t]Zt, as desired.

2

4 Characterization results via ∆-bisimulation

The non-contingency logic NCL can be seen as a fragment of modal logic
ML, as ∆ϕ =df 2ϕ ∨ 2¬ϕ. In this section we characterize the fragment
of NCL within ML and within first-order logic. Given a model M and s in
M, we use ue(M) and πs to denote the ultrafilter extension of M and the
principle ultrafilter generated by s, respectively. We refer the reader to [1] for
the definitions about these notions, as well as m-saturation. We first state (but
not prove) a standard result in modal logic (cf. e.g., [1]).

Proposition 4.1 For any M and s in M, ue(M) is an m-saturated model
and (M, s) ≡2 (ue(M), πs).

Since NCL is a fragment of ML, any set of NCL-formulas can be viewed
as a set of ML-formulas, thus we have:

Lemma 4.2 Let (M, s) be a pointed model. Then ue(M) is an NCL-saturated
model and (M, s) ≡∆ (ue(M), πs).

Lemma 4.3 Let (M, s) and (N , t) be pointed models. Then

(M, s) ≡∆ (N , t) implies (ue(M), πs) ↔∆ (ue(N ), πt).

Proof By Lemma 4.2 and Proposition 3.9. 2

We are now ready to prove the two characterization results: non-
contingency logic is the ∆-bisimulation-invariant fragment of modal logic and
of first-order logic.

Let ϕ be an ML-formula and α be a first-order formula. Call ϕ (resp.
α) invariant under ∆-bisimulation, if for any models (M, s), (N , t) such that
(M, s)↔∆ (N , t), we have M, s � ϕ iff N , t � ϕ (resp. M, s � α iff N , t � α).

Theorem 4.4 An ML-formula is equivalent to an NCL-formula iff it is in-
variant under ∆-bisimulation.

Proof It is clear for the direction ‘only if’ from Proposition 3.5.
For the converse direction, suppose that an ML-formula ϕ is invariant under

∆-bisimulation. Define

MOC(ϕ) = {t(ψ) | ψ is an NCL-formula and ϕ � t(ψ)} 7

If we can show MOC(ϕ) � ϕ, then by the compactness theorem for modal logic,
for some finite subset T of MOC(ϕ) such that T � ϕ, i.e., �

∧
T → ϕ. In the

meantime, the definition of MOC(ϕ) implies that ϕ �
∧
T , i.e., � ϕ →

∧
T .

7 Here t is a translation function which recursively translates every NCL formula into the
corresponding equivalent ML formula. In particular, for every NCL formula ϕ of the form
∆ψ, t(ϕ) = 2t(ψ) ∨ 2t(¬ψ).
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Thus � ϕ ↔
∧
T . As each χ ∈ T is the translation of an NCL-formula, so is∧

T . Then we are done.
So it remains to show MOC(ϕ) � ϕ. Assume that M, s � MOC(ϕ), we

need to show M, s � ϕ. Let X = {t(ψ) | M, s � t(ψ), ψ ∈ NCL}. We claim
that X ∪ {ϕ} is satisfiable: if not, then by compactness theorem for modal
logic again, for some finite X ′ ⊆ X such that � ϕ→ ¬

∧
X ′, viz. ϕ � ¬

∧
X ′,

then ¬
∧
X ′ ∈MOC(ϕ), and thusM, s � ¬

∧
X ′, contradictingM, s � X and

X ′ ⊆ X.
Since X ∪ {ϕ} is satisfiable, it may as well assume that there is a pointed

model (N , t) with N , t � X ∪ {ϕ}. We can show that (M, s) ≡∆ (N , t): given
any NCL-formula ψ, if M, s � ψ, then M, s � t(ψ), and then t(ψ) ∈ X,
thus N , t � t(ψ), therefore N , t � ψ; if M, s 2 ψ, then M, s � ¬ψ, and then
M, s � t(¬ψ), thus t(¬ψ) ∈ X, hence N , t � t(¬ψ), and therefore N , t � ¬ψ,
i.e., N , t 2 ψ.

Now construct the ultrafilter extensions of M and N , denoted by ue(M)
and ue(N ), respectively. According to the fact that (M, s) ≡∆ (N , t) and
Lemma 4.3, we have (ue(M), πs)↔∆ (ue(N ), πt). From N , t � ϕ and Propos-
ition 4.1, it follows that ue(N ), πt � ϕ. By supposition and (ue(M), πs) ↔∆

(ue(N ), πt), we get ue(M), πs � ϕ. By Proposition 4.1 again, one may conclude
that M, s � ϕ, as desired. 2

By proposition 3.4, if a formulas is invariant under ∆-bisimulation then it
is invariant under 2-bisimulation. The theorem below follows from Theorem
4.4 and Van Benthem Characterization Theorem (cf. e.g., [1]).

Theorem 4.5 A first-order formula is equivalent to an NCL-formula iff it is
invariant under ∆-bisimulation.

5 Axiomatization of NCL over symmetric frames

In this section, we propose an axiomatization for non-contingency logic over
the symmetric frames, a result so far not obtained in the extensive literature
on the topic of non-contingency.

As mentioned at the end of Section 2, the schema AD can guide us to search
for proper axioms in NCL for certain frame properties. For example, AD can
help us in finding T-like axiom in NCL in a precise way.

∇¬ψ → (2¬ϕ→ ¬ϕ) (1)

⇔ ∇¬ψ ∧2¬ϕ→ ¬ϕ (2)

⇔ ∇¬ψ ∧∆¬ϕ ∧∆(¬ψ → ¬ϕ)→ ¬ϕ (3)

⇔ ∆ϕ ∧∆(ϕ→ ψ) ∧ ϕ→ ∆ψ (4)

We write ∇¬ψ → (2¬ϕ → ¬ϕ) rather than 2¬ϕ → ¬ϕ, since 2 is definable
in terms of ∆ under the condition ∇¬ψ for some ¬ψ. The above transition
from (2) to (3) follows from Proposition 2.5. By using TAUT, ∆Equ and RE∆
below and Def∇, we then get the desired axiom (4), which was used in [10] to
axiomatize NCL over the reflexive frames.
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Similar idea guides us to the right direction of finding the B-like axiom
(axiom ∆B below) in NCL, but further fine-tunings are needed.

Definition 5.1 (Proof system NCLB) The proof system NCLB consists of
the following axiom schemas and inference rules.

TAUT all instances of tautologies
∆Con ∆(χ→ ϕ) ∧∆(¬χ→ ϕ)→ ∆ϕ
∆Dis ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ)
∆Equ ∆ϕ↔ ∆¬ϕ
∆B ϕ→ ∆((∆ϕ ∧∆(ϕ→ ψ) ∧ ¬∆ψ)→ χ)
MP From ϕ and ϕ→ ψ infer ψ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

In the following, we write ` ϕ if there is a proof of ϕ in NCLB.

Proposition 5.2 The rule (NEC∆):
ϕ

∆ϕ
is derivable in NCLB:

Proof First, we show that ` ∆>:

(i) > → ∆((∆> ∧∆(> → ψ) ∧ ¬∆ψ)→ χ) ∆B

(ii) ∆((∆> ∧∆(> → ψ) ∧ ¬∆ψ)→ χ) TAUT(i)
(iii) ∆((∆> ∧∆ψ ∧ ¬∆ψ)→ χ) RE∆(ii)
(iv) ∆(⊥ → χ) RE∆(iii)
(v) ∆> RE∆(iv)

Next, suppose that ` ϕ, to show that ` ∆ϕ. From the supposition and TAUT

it follows that ` ϕ↔ >. Then using RE∆ we get ` ∆ϕ↔ ∆>. Since we have
shown ` ∆>, we conclude that ` ∆ϕ. 2

When we drop the axiom ∆B and add the rule NEC∆, we get the logical
system PLKW, which is shown to be sound and complete with respect to the
class of arbitrary frames in [5, Section 4] (by taking Kw there as ∆). But
note that NEC∆ is indispensable in PLKW, since NEC∆ is not admissible in
PLKW− NEC∆ (equivalently, NCLB−∆B). To see this, we can show that ∆>
is not provable in PLKW − NEC∆: define an auxiliary semantics 
, which is
the same as � except that wherein each ∆ϕ is interpreted always false, then
we can show that PLKW− NEC∆ is sound with respect to 
, but 1 ∆>, thus
∆> is not provable in PLKW− NEC∆, therefore NEC∆ cannot be admissible in
PLKW− NEC∆.

Proposition 5.3 NCLB is sound with respect to the class of symmetric
frames.

Proof Since PLKW is sound, we only need to show the validity of Axiom ∆B.
Given any symmetric modelM = 〈S,R, V 〉 and s ∈ S, suppose thatM, s �

ϕ. Let t be an arbitrary world with sRt. By the symmetry of R, we have tRs.
We show that M, t � (∆ϕ ∧∆(ϕ → ψ) ∧ ¬∆ψ) → χ. If M, t � ∆ϕ ∧∆(ϕ →
ψ) ∧ ¬∆ψ, then there exist t1, t2 such that tRt1 and tRt2 and t1 � ψ and
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t2 � ¬ψ. From t � ∆ϕ, tRs and the supposition, it follows that t1 � ϕ and
t2 � ϕ. Thus t1 � ϕ → ψ and t2 � ¬(ϕ → ψ), contrary to the fact that
t � ∆(ϕ → ψ) and tRt1 and tRt2. Therefore M, t 2 ∆ϕ ∧∆(ϕ → ψ) ∧ ¬∆ψ,
which implies that M, t � (∆ϕ ∧∆(ϕ→ ψ) ∧ ¬∆ψ)→ χ, as desired.

2

We now proceed with the completeness of NCLB. First, some preparations.

Lemma 5.4

` (∆(ϕ→ (χ→ ψ)) ∧∆(¬ϕ→ ψ) ∧ ¬∆ψ ∧∆ϕ)→ ∆(χ→ ψ)

Proof

(i) ∆(¬ϕ→ ψ) ∧ ¬∆ψ → ¬∆(ϕ→ ψ) ∆Con

(ii) ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ (χ→ ψ)) ∆Dis

(iii) ∆(ϕ→ (χ→ ψ)) ∧∆(¬ϕ→ (χ→ ψ))→ ∆(χ→ ψ) ∆Con

(iv) ∆(¬ϕ→ ψ) ∧ ¬∆ψ ∧∆ϕ→ ∆(¬ϕ→ (χ→ ψ)) TAUT(i)(ii)
(v) (∆(ϕ→ (χ→ ψ)) ∧∆(¬ϕ→ ψ) ∧ ¬∆ψ ∧∆ϕ)

→ ∆(χ→ ψ) TAUT(iii)(iv)

2

Proposition 5.5 For all k ≥ 1:

` ∆(

k∧
j=1

ϕj → ¬ψ) ∧
k∧

j=1

∆ϕj ∧
k∧

j=1

∆(ψ → ϕj)→ ∆ψ

Proof By induction on k.

• k = 1. We need to show that ` ∆(ϕ1 → ¬ψ) ∧ ∆ϕ1 ∧ ∆(ψ → ϕ1) → ∆ψ.
This is clear from TAUT, RE∆, ∆Con and ∆Equ.

• Inductive step. Assume by induction hypothesis (IH) that the proposition
holds for k = n. We now need to show that:

` ∆(

n+1∧
j=1

ϕj → ¬ψ) ∧
n+1∧
j=1

∆ϕj ∧
n+1∧
j=1

∆(ψ → ϕj)→ ∆ψ

The proof is as follows.

(i) ∆(
∧n

j=1 ϕj → ¬ψ) ∧
∧n

j=1 ∆ϕj

∧
∧n

j=1 ∆(ψ → ϕj)→ ∆ψ IH

(ii) (∆(ϕn+1 → (
∧n

j=1 ϕj → ¬ψ)) ∧∆(¬ϕn+1 → ¬ψ)

∧¬∆¬ψ ∧∆ϕn+1)→ ∆(
∧n

j=1 ϕj → ¬ψ) Lemma 5.4

(iii) (∆(
∧n+1

j=1 ϕj → ¬ψ)) ∧∆(ψ → ϕn+1) ∧ ¬∆ψ

∧∆ϕn+1)→ ∆(
∧n

j=1 ϕj → ¬ψ) TAUT, RE∆,∆Equ, (ii)

(iv) (∆(
∧n+1

j=1 ϕj → ¬ψ)) ∧
∧n+1

j=1 ∆ϕj ∧ ¬∆ψ

∧
∧n+1

j=1 ∆(ψ → ϕj)→ ∆ψ TAUT(i)(iii)

(v) ∆(
∧n+1

j=1 ϕj → ¬ψ) ∧
∧n+1

j=1 ∆ϕj

∧
∧n+1

j=1 ∆(ψ → ϕj)→ ∆ψ TAUT(iv)
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2

Next, we turn to the canonical model. The model defined below will be used
to construct the desired canonical model for NCLB, though it is not suitable
for the system in question.

Definition 5.6 (Pseudo-canonical model) Define Mc = 〈Sc, Rc, V c〉 as
follows:

• Sc = {s | s is a maximal consistent set of NCLB}
• For all s, t ∈ Sc, sRct iff there exists χ such that:
· ¬∆χ ∈ s, and
· for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.

• V c(p) = {s ∈ Sc | p ∈ s}.

This definition of Rc can be viewed as a simplification of the canonical
relation in [5, Definition 20] based on the almost-definability (Proposition 2.5).
In the construction of canonical model for standard modal logic, the canonical
relation Rc is usually defined by sRct holds iff for all ϕ, 2ϕ ∈ s implies ϕ ∈ t.
According to the almost-definability, 2ϕ ∈ s can be replaced by ∆ϕ ∧∆(χ→
ϕ) ∈ s provided that ¬∆χ ∈ s.

Analogous to the proof of Truth Lemma of PLKW ([5, Lemma 21]), we
have

Lemma 5.7 For all ϕ ∈ NCL and s ∈ Sc, Mc, s � ϕ iff ϕ ∈ s.

Proof By induction on ϕ. The only non-trivial case is when ϕ = ∆ψ.
‘If’: Assume that ∆ψ ∈ s, we need to showMc, s � ∆ψ. Suppose not, then

there exist t1, t2 ∈ Sc such that sRct1, sR
ct2 and t1 � ψ and t2 2 ψ. From

t1 � ψ and t2 2 ψ, and induction hypothesis, we have that ψ ∈ t1 and ψ /∈ t2,
respectively. From sRct1 we infer that there is a χ1 such that ¬∆χ1 ∈ s and
(∗): for all ϕ, ∆ϕ ∧∆(χ1 → ϕ) ∈ s implies ϕ ∈ t1. Since ∆ψ ∈ s and ψ ∈ t1,
∆¬ψ ∈ s and ¬ψ /∈ t1. Now from (∗), it follows that ¬∆(χ1 → ¬ψ) ∈ s, thus
¬∆(ψ → ¬χ1) ∈ s by RE∆. Similarly, from sRct2 we derive that there exists
χ2 such that ¬∆(χ2 → ψ) ∈ s, i.e., ¬∆(¬ψ → ¬χ2) ∈ s. By the axiom ∆Dis,
we obtain that ¬∆ψ ∈ s, contradiction.

‘Only if’: Suppose that ∆ψ /∈ s. Then ¬∆ψ ∈ s and ¬∆¬ψ ∈ s. We need
to construct two points t1, t2 ∈ Sc such that sRct1 and sRct2 and ψ ∈ t1 and
¬ψ ∈ t2. First, we have to show

(i) {ϕ | ∆ϕ ∧∆(ψ → ϕ) ∈ s} ∪ {ψ} is consistent.

(ii) {ϕ | ∆ϕ ∧∆(¬ψ → ϕ) ∈ s} ∪ {¬ψ} is consistent.

We prove item (i). Suppose the set is inconsistent. Then there exist ϕ1, · · · , ϕn

such that ` ϕ1 ∧ · · · ∧ ϕn → ¬ψ and ∆ϕk ∧∆(ψ → ϕk) ∈ s for all k ∈ [1, n].
From NEC∆ follows that ∆(ϕ1 ∧ · · · ∧ ϕn → ¬ψ) ∈ s. Now from Proposition
5.5, we infer that ∆ψ ∈ s, contradiction.

From item (i), the definition of Rc, and the observation that every consistent
set can be extended to a maximal consistent set (Lindenbaum Lemma), we
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conclude that there is a t1 such that sRct1 and ψ ∈ t1.
The proof of item (ii) is similar to item (i), and similarly, from item (ii), we

conclude that there is a t2 such that sRct2 and ¬ψ ∈ t2. 2

We show that the relation Rc is almost symmetric.

Proposition 5.8 For any s, t ∈ Sc, if sRct and there exists a χ such that
¬∆χ ∈ t then tRcs.

Proof Assume that sRct and ¬∆χ ∈ t, we need to show tRcs. Suppose not,
then there exists ϕ such that ∆ϕ ∧ ∆(χ → ϕ) ∈ t but ϕ 6∈ s (thus ¬ϕ ∈ s).
Since sRct, by definition, there is a ψ such that ¬∆ψ ∈ s and (?): for all θ :
∆θ ∧ ∆(ψ → θ) ∈ s implies θ ∈ t. Thanks to ∆B, since ¬ϕ ∈ s, we have
∆((∆¬ϕ ∧ ∆(¬ϕ → ¬χ) ∧ ¬∆¬χ) → ¬ψ) ∈ s and ∆(∆ϕ ∧ ∆(¬ϕ → ¬χ) ∧
¬∆¬χ) ∈ s. By ∆Equ and RE∆, ∆(∆ϕ∧∆(χ→ ϕ)∧¬∆χ)∧∆((∆ϕ∧∆(χ→
ϕ) ∧ ¬∆χ)→ ¬ψ) ∈ s, finally we have ∆¬(∆ϕ ∧∆(χ→ ϕ) ∧ ¬∆χ) ∧∆(ψ →
¬(∆ϕ∧∆(χ→ ϕ)∧¬∆χ)) ∈ s. By (?), we have ¬(∆ϕ∧∆(χ→ ϕ)∧¬∆χ) ∈ t,
contradiction. 2

The above proposition tells us that Rc is almost symmetric: sRct implies
tRcs, given that there exists a χ such that ¬∆χ ∈ t. However, there are
some states in Mc which include ∆χ for any χ. In the sequel, we call them
‘dead ends’ due to the fact that those states cannot have outgoing transitions
according to the definition of Rc. To turn Mc into a symmetric model, we
handle these special points based on the following two crucial observations.

(i) if sRct and t includes no ¬∆χ formula, then t has no outgoing Rc in Mc

by definition. Now if we add a unique transition from t back to s to make
it symmetric, then it does not change the truth values of formulas on both
s and t.

(ii) However, there might be two or more transitions to a dead end t, e.g.,
sRct and uRct, then adding both back arrows will change the truth values
of formulas on t, since now t has two different successors and some ∆ϕ
may not hold any more. We can fix this by replacing those dead ends with
some new copies of themselves such that each copy has only one incoming
transition. Essentially, we just split those dead ends.

Based on the above observations, we build the canonical model of NCLB
formally. First let D = {t | t ∈ Sc, ∆χ ∈ t for all χ, and there exists an
s ∈ Sc such that sRct }, where Sc and Rc are defined as in Definition 5.6. Let
D = Sc\D.

Definition 5.9 (Canonical Model of NCLB) The canonical model M+ of
NCLB is a tuple 〈S+, R+, f, V +〉 where:

• S+ = D ∪ {(s, t) | t ∈ D, sRct}
• sR+t iff one of the following cases holds:
(i) s, t ∈ D and sRct,
(ii) s ∈ D and t = (s, s′) ∈ S+,

(iii) t ∈ D and s = (t, t′) ∈ S+.



Fan, Wang and van Ditmarsch 193

• f is a function assigning each state in S+ to a maximal consistent set in Sc

such that f(s) = s for s ∈ D, and f((s, t)) = t for (s, t) ∈ S+.

• V +(p) = {s ∈ S+ | p ∈ f(s)}

The function f is introduced to label the maximal consistent sets in M+,
since there can be multiple states inM+ sharing the same maximal consistent
set.

Proposition 5.10

(i) f is surjective.

(ii) if s ∈ D then sR+t implies f(s)Rcf(t).

(iii) if f(s)Rct then there exists u ∈ S+ such that f(u) = t and sR+u.

Proof For item (i), we need to show that for every t ∈ Sc, there exists a
u ∈ S+ such that f(u) = t. Given any t ∈ Sc, there are two cases to consider:

• t /∈ D, i.e., t ∈ D. By the definition of S+, we have t ∈ S+; by the definition
of f , we have f(t) = t.

• t ∈ D. By the definition of D, there exists an s ∈ Sc such that sRct. By the
definition of S+, we have (s, t) ∈ S+. Then by the definition of f , we have
f((s, t)) = t.

Either case implies that there exists a u ∈ S+ such that f(u) = t.
For item (ii), suppose s ∈ D (thus f(s) = s) and sR+t. If t ∈ D then sRct

and f(t) = t by definitions, thus f(s)Rcf(t); if t 6∈ D then t = (s, s′) ∈ S+ and
sRcs′, thus f(t) = f((s, s′)) = s′, and hence f(s)Rcf(t).

For item (iii), suppose f(s)Rct. By the definition of D, we have f(s) /∈ D.
Since f(s) ∈ Sc, it follows that f(s) ∈ D, thus f(s) = s: otherwise, f(s) = t′

and s = (t, t′) ∈ S+, then t′ ∈ D and t′ ∈ D, which is impossible. If t ∈ D then
f(t) = t and sR+t. If t ∈ D then (s, t) ∈ S+ and f((s, t)) = t, and sR+(s, t).2

Notice that the condition s ∈ D in (ii) above is indispensable. For instance,
suppose that s = (t, t′) ∈ S+ and t ∈ D. By definition, sR+t. By the definition
of f , we have f(s) = f((t, t′)) = t′ and f(t) = t. Since t′ ∈ D, we do not have
t′Rct, i.e., it is not the case that f(s)Rcf(t).

Lemma 5.11 M+ is symmetric.

Proof Suppose for any s, t ∈ S+ that sR+t. We need to show that tR+s.
According to the definition of R+, we have three cases:

(i) s, t ∈ D and sRct. Then t /∈ D. From the definition of D, we can see that
there exists a χ such that ¬∆χ ∈ t. According to Proposition 5.8 we have
tRcs thus tR+s.

(ii) s ∈ D and t = (s, s′). By the third condition of the definition of R+ we
have tR+s.

(iii) t ∈ D and s = (t, t′). By the second condition of the definition of R+ we
have tR+s.
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2

We show that M+ preserves the truth values of formulas w.r.t. f :

Proposition 5.12 For any s ∈ S+ and any ϕ ∈ NCL, we have

M+, s � ϕ ⇐⇒ Mc, f(s) � ϕ. 8

Proof By induction on ϕ.

• ϕ = p ∈ P. For any s ∈ S+, s ∈ V +(p) iff p ∈ f(s) iff f(s) ∈ V c(p).

• Boolean cases are immediate.

• ϕ = ∆ψ. We show that M+, s 2 ∆ψ ⇐⇒ Mc, f(s) 2 ∆ψ.
⇒: SupposeM+, s 2 ∆ψ then there are two points t and t′ such that sR+t,

sR+t′, M+, t � ψ and M+, t′ 2 ψ. First note that s ∈ D, for otherwise s
cannot have two different successors according to the definition of R+. Now
due to item (ii) of Proposition 5.10, f(s)Rcf(t) and f(s)Rcf(t′). By IH,
Mc, f(t) � ψ and Mc, f(t′) 2 ψ. Thus Mc, f(s) 2 ∆ψ.
⇐: Suppose Mc, f(s) 2 ∆ψ then there are two points t and t′ such that

f(s)Rct, f(s)Rct′, Mc, t � ψ and Mc, t′ 2 ψ. Now according to item (iii)
of Proposition 5.10, there are u, u′ ∈ S+ such that t = f(u), t′ = f(u′),
sR+u and sR+u′. By IH, we have M+, u � ψ and M+, u′ 2 ψ, therefore
M+, s 2 ∆ψ.

2

From Lemma 5.7 and Proposition 5.12 we have:

Lemma 5.13 For any ϕ ∈ NCL and any s ∈ S+, M+, s � ϕ iff ϕ ∈ f(s).

Now due to item (i) of Proposition 5.10, every s ∈ Sc is an image of some u
in M+ under f , thus each maximal consistent set is satisfiable in M+, which
gives us the completeness theorem based on Lemma 5.11.

Theorem 5.14 (Soundness and Completeness of NCLB) NCLB is
sound and strongly complete with respect to the class of symmetric frames.

6 Conclusions and future work

We showed that necessity is almost definable in terms of non-contingency, which
is demonstrated by the valid principle∇ψ → (2ϕ↔ ∆ϕ∧∆(ψ → ϕ)) (AD). We
proposed notions of ∆-bisimulation and of ∆-bisimulation contraction. We also
characterized non-contingency logic as the ∆-bisimulation invariant fragment
of modal logic and of first-order logic. Inspired again by almost-definability, we
axiomatized non-contingency logic over symmetric frames. This completes the
spectrum of complete systems in the literature for non-contingency logic over
the usual frame classes.

8 We can also prove this proposition by showing that the function f is the graph of a ∆-
bisimulation.
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As mentioned in the introduction, in an epistemic setting, ∆ϕ is read as
“the agent knows whether ϕ is true”. There, it is natural to consider multi-
agent scenarios which require multiple ∆-operators. For future work, we con-
jecture that the multi-agent version of the proof system NCLB also axiomatizes
multi-agent non-contingency logic, where instead of unlabelled ∆-operators we
employ labeled ∆a-operators.

Other future work involves the dynamics of non-contingency logic. In [5]
non-contingency logic with public announcements is axiomatized. This can be
straightforwardly generalized to action models with non-contingency operat-
ors. A reduction axiom for knowing whether (non-contingency) consequences
after update is [M, s]∆ψ ↔ (pre(s) →

∧
sRt(∆[M, t]ψ ∨ ∆[M, t]¬ψ)). Such

dynamics can also be added to the axiomatizations for non-contingency logic
over various other frames, such as the underlying one on symmetric frames.
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